Int J Sports Med 2015; 36(14): 1149-1155
DOI: 10.1055/s-0035-1555927
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Monitoring Locomotor Load in Soccer: Is Metabolic Power, Powerful?

M. Buchheit
1   Paris Saint Germain FC, Performance, Saint-Germain-en-Laye, France
,
C. Manouvrier
2   Olympic de Marseille Fooball Club, Physical Performance, Marseille, France
,
J. Cassirame
3   Laboratory of Sport Sciences, Université de Franche-Comté, UFR STAPS Besançon, Besançon, France
,
J.-B. Morin
4   Faculty of Sport Sciences, Université de Nice Sophia Antipolis, NICE, France
› Author Affiliations
Further Information

Publication History



accepted after revision 29 June 2015

Publication Date:
22 September 2015 (online)

Preview

Abstract

The aim of the present study was to examine the validity and reliability of metabolic power (P) estimated from locomotor demands during soccer-specific drills. 14 highly-trained soccer players performed a soccer-specific circuit with the ball (3×1-min bouts, interspersed with 30-s passive recovery) on 2 different occasions. Locomotor activity was monitored with 4-Hz GPSs, while oxygen update (VO2) was collected with a portable gas analyzer. P was calculated using either net VO2 responses and traditional calorimetry principles (PVO2, W.kg−1) or locomotor demands (PGPS, W.kg−1). Distance covered into different speed, acceleration and P zones was recorded. While PGPS was 29±10% lower than PVO2 (d<− 3) during the exercise bouts, it was 85±7% lower (d<− 8) during recovery phases. The typical error between PGPS vs. PVO2 was moderate: 19.8%, 90% confidence limits: (18.4;21.6). The correlation between both estimates of P was small: 0.24 (0.14;0.33). Very large day-to-day variations were observed for acceleration, deceleration and > 20 W.kg−1 distances (all CVs > 50%), while average Po2 and PGPS showed CVs < 10%. ICC ranged from very low- (acceleration and > 20 W.kg−1 distances) to-very high (PVO2). PGPS largely underestimates the energy demands of soccer-specific drills, especially during the recovery phases. The poor reliability of PGPS >20 W.kg−1 questions its value for monitoring purposes in soccer.