Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(06): 865-881
DOI: 10.1055/s-0035-1560390
DOI: 10.1055/s-0035-1560390
paper
Highly Stereoselective Synthesis of Fluoroalkene Dipeptides via the Novel Chromium(II)-Mediated Carbon–Fluorine Bond Cleavage/New Carbon–Carbon Bond Formation
Further Information
Publication History
Received: 02 October 2015
Accepted after revision: 20 November 2015
Publication Date:
29 December 2015 (online)
Abstract
An efficient chromium(II)-mediated reductive coupling reaction of various CBrF2-containing molecules and aldehydes has been developed. This reaction proceeds presumably via the monofluorinated dichromium(III) intermediate generated by the carbon–fluorine bond activation, and provides a general and straightforward access to synthesize a variety of (E)- or (Z)-β-fluoroallylic alcohols in a highly stereoselective manner. Based on the novel reductive coupling, four types of fluoroalkene dipeptide analogues could be stereoselectively prepared.
Key words
β-fluoroallylic alcohol derivatives - carbon–fluorine bond activation - chromium(II) chloride - stereoselective - fluoroalkene bioisosteresSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560390.
- Supporting Information
-
References
- 1a Chang W, Mosley RT, Bansal S, Keilman M, Lam AM, Furman PA, Otto MJ, Sofia MJ. Bioorg. Med. Chem. Lett. 2012; 22: 2938
- 1b Yanai H, Taguchi T. Eur. J. Org. Chem. 2011; 5939
- 1c Couve-Bonnaire S, Cahard D, Pannecoucke X. Org. Biomol. Chem. 2007; 5: 1151
- 1d Zhao K, Lim DS, Funaki T, Welch JT. Bioorg. Med. Chem. 2003; 11: 207
- 2a Yang M.-H, Matikonda SS, Altman RA. Org. Lett. 2013; 15: 3894
- 2b Greedy B, Gouverneur V. Chem. Commun. 2001; 233
- 2c Tius MA, Kawakami JK. Tetrahedron 1995; 51: 3997
- 2d Lee SH, Schwartz J. J. Am. Chem. Soc. 1986; 108: 2445
- 3a Pfund E, Masson S, Vazeux M, Lequeux T. J. Org. Chem. 2004; 69: 4670
- 3b van Steenis JH, van der Gen A. Eur. J. Org. Chem. 2001; 897
- 3c Tsai H.-J. Tetrahedron Lett. 1996; 37: 629
- 4a Nakamura Y, Okada M, Sato A, Horikawa H, Koura M, Saito A, Taguchi T. Tetrahedron 2005; 61: 5741
- 4b Otaka A, Watanabe J, Yukimasa A, Sasaki Y, Watanabe H, Kinoshita T, Oishi S, Tamamura H, Fujii N. J. Org. Chem. 2004; 69: 1634
- 4c Otaka A, Watanabe H, Yukimasa A, Oishi S, Tamamura H, Fujii N. Tetrahedron Lett. 2001; 42: 5443
- 5a Cao C.-R, Ou S, Jiang M, Liu J.-T. Org. Biomol. Chem. 2014; 12: 467
- 5b Larnaud F, Pfund E, Linclau B, Lequeux T. Tetrahedron 2014; 70: 5632
- 5c Yan X.-W, Zhang Q, Wei W, Ji J.-X. Tetrahedron Lett. 2014; 55: 3750
- 5d Prakash GK. S, Zhang Z, Wang F, Rahm M, Ni C, Iuliucci M, Haiges R, Olah GA. Chem. Eur. J. 2014; 20: 831
- 5e Schneider C, Masi D, Couve-Bonnaire S, Pannecoucke X, Hoarau C. Angew. Chem. Int. Ed. 2013; 52: 3246
- 5f Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906
- 5g Kajjout M, Smietana M, Leroy J, Rolando C. Tetrahedron Lett. 2013; 54: 1658
- 5h Lecea M, Grassin A, Ferreiro-Mederos L, Choppin S, Urbano A, Carreňo MC, Colobert F. Eur. J. Org. Chem. 2013; 4486
- 5i Bergeron M, Guyader D, Paquin J.-F. Org. Lett. 2012; 14: 5888
- 5j Yanai H, Okada H, Sato A, Okada M, Taguchi T. Tetrahedron Lett. 2011; 52: 2997
- 5k Bergeron M, Johnson T, Paquin J.-F. Angew. Chem. Int. Ed. 2011; 50: 11112
- 5l Nikolova GS, Haufe G. Beilstein J. Org. Chem. 2008; 4: 12
- 5m Ghosh AK, Zajc B. Org. Lett. 2006; 8: 1553
- 5n Saito A, Nakagawa M, Taguchi T. J. Fluorine Chem. 2005; 126: 1166
- 5o Wang Z, Gonzalez A, Wnuk SF. Tetrahedron Lett. 2005; 46: 5313
- 5p Nakagawa M, Saito A, Soga A, Yamamoto N, Taguchi T. Tetrahedron Lett. 2005; 46: 5257
- 5q Dutheuil G, Lei X, Pannecoucke X, Quirion J.-C. J. Org. Chem. 2005; 70: 1911
- 5r Nakamura Y, Okada M, Horikawa H, Taguchi T. J. Fluorine Chem. 2002; 117: 143
- 5s Shimizu M, Hata T, Hiyama T. Tetrahedron Lett. 1999; 40: 7375
- 5t Chen C, Wilcoxen K, Kim K, McCarthy JR. Tetrahedron Lett. 1997; 38: 7677
- 5u Allmendinger T, Felder E, Hungarbühler E. Tetrahedron Lett. 1990; 31: 7301
- 6a Kuehnel MF, Holstein P, Kliche M, Krüger J, Matthies S, Nitsch D, Schutt J, Sparenberg M, Lentz D. Chem. Eur. J. 2012; 18: 10701
- 6b Clot E, Eisenstein O, Jasim N, Macgregor SA, Mcgrady JE, Perutz RN. Acc. Chem. Res. 2011; 44: 333
- 6c Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
- 6d Ohashi M, Shibata M, Saijo H, Kambara T, Ogoshi S. Organometallics 2013; 32: 3631
- 6e Lv H, Cai Y.-B, Zhang JL. Angew. Chem. Int. Ed. 2013; 52: 1
- 6f Guo W.-J, Wang Z.-X. J. Org. Chem. 2013; 78: 1054
- 6g Yu D, Shen Q, Lu L. J. Org. Chem. 2012; 77: 1798
- 6h Ohashi M, Kambara T, Hatanaka T, Saijo H, Doi R, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 3256
- 6i Schaub T, Backes M, Radius U. J. Am. Chem. Soc. 2006; 128: 15964
- 7a Takai K. Org. React. 2004; 64: 253
- 7b Jin H, Uenishi J, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
- 7c Takai K, Kimura K, Kuroda T, Hiyama T, Nozaki H. Tetrahedron Lett. 1983; 24: 5281
- 8 Nihei T, Yokotani S, Ishihara T, Konno T. Chem. Commun. 2014; 50: 1543
- 9 Shimada T, Konno T, Ishihara T. Chem. Lett. 2007; 36: 636
- 10 For the preparation of 3, see: Peng S, Qing F.-L, Li Y.-Q, Hu C.-M. J. Org. Chem. 2000; 65: 694
- 11a Sasaki Y, Hosono E. Jpn Kokai Tokkyo Koho 04091051, 1992
- 11b Chen J, Hu C.-M. J. Chem. Soc., Perkin Trans. 1 1994; 1111
- 12a Bartberger MD, Dolbier WR. Jr, Lusztyk J, Ingold KU. Tetrahedron 1997; 53: 9857
- 12b Gonzalez J, Foti CJ, Elsheimer S. J. Org. Chem. 1991; 56: 4322
- 13 It has been discussed that LiI plays an important role in the solubility of CrCl2 in DMF, see: Wessjohann W, Gabriel T. J. Org. Chem. 1997; 62: 3772
- 14 The stereochemical assignments of 9, 10, 12, and 14 were done based on the analyses of 1H NMR spectra. The coupling constants between vinyl H and F were 21–23 Hz for 9 and 35–38 Hz for 10, 12, and 14, which indicate that 9 and 10, 12, 14 possess E- and Z-configuration, respectively. The details are given in the Supporting Information.
- 15 When the reaction was carried out at –40 °C for 16 h in the presence of 2.0 equiv of Ti(Oi-Pr)4, instead of a catalytic amount of LiI, 13 was obtained in 40% yield.
- 16 We first attempted the nucleophilic substitution reaction of NaN3 with 10a under the same conditions as described in Table 5. However, no deisred adduct was detected.
- 17 Watanabe D, Koura M, Saito A, Yanai H, Nakamura Y, Okada M, Sato A, Taguchi T. J. Fluorine Chem. 2011; 132: 327
- 18a Baati R, Barma DK, Krishna UM, Mioskowski C, Falck JR. Tetrahedron Lett. 2002; 43: 959
- 18b Baati R, Barma DK, Falck JR, Mioskowski C. J. Am. Chem. Soc. 2001; 123: 9196
- 18c Barma DK, Baati R, Valleix A, Mioskowski C, Falck JR. Org. Lett. 2001; 3: 4237
- 19 Pitterna T, Böger M, Maienfisch P. Chimia 2004; 58: 108
- 20 Known compounds, see ref. 5n and 5q.
For reviews, see:
For recent studies, see:
For Cr(II)-mediated reactions, see:
It has been reported that trichloroalkanes in the presence of 4.0 equiv of CrCl2 can be converted into the corresponding chlorovinylidene chromium(III) carbenoids, see: