Subscribe to RSS
DOI: 10.1055/s-0035-1560658
Diastereoselective Synthesis of Trisubstituted Cyclopropanes by Palladium-Catalyzed Intramolecular Allylic Alkylation of α-Aryl Esters
Publication History
Received: 12 August 2015
Accepted after revision: 16 September 2015
Publication Date:
29 September 2015 (online)
Abstract
We have developed a novel method for synthesizing trisubstituted cyclopropane derivatives by a palladium-catalyzed intramolecular allylic alkylation of α-aryl esters. By using α-aryl α-(methoxycarbonyl) γ-vinyl γ-lactones as substrates, decarboxylative formation of π-allylpalladium(II) intermediates followed by an intramolecular allylic alkylation of the ester enolates proceeded in the presence of 5 mol% of a palladium catalyst, producing 1-aryl-1-(methoxycarbonyl)-2-vinylcyclopropanes in good to excellent yields and high diastereoselectivities. The relative configuration of the major isomer was determined by transforming the product into a known intermediate of milnacipran synthesis. When we extended our method to asymmetric catalysis, we obtained methyl (1S,2S)-1-phenyl-2-vinylcyclopropanecarboxylate in up to 55% ee by using (S)-[2′-(diphenylmethoxy)-1,1′-binaphthalen-2-yl](diphenyl)phosphine as a chiral monodentate phosphorus ligand.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560658.
- Supporting Information
-
References
- 1a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 1b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 2a Trost BM, Schroeder GM. J. Am. Chem. Soc. 1999; 121: 6759
- 2b Braun M, Laicher F, Meier T. Angew. Chem. Int. Ed. 2000; 39: 3494
- 2c You S.-L, Hou X.-L, Dai L.-X, Zhu X.-Z. Org. Lett. 2001; 3: 149
- 2d Trost BM, Schroeder GM. Chem. Eur. J. 2005; 11: 174
- 2e Braun M, Meier T. Synlett 2005; 2968
- 2f Yan X.-X, Liang C.-G, Zhang Y, Hong W, Cao B.-X, Dai L.-X, Hou X.-L. Angew. Chem. Int. Ed. 2005; 44: 6544
- 2g Graening T, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 17192
- 3a Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett. 1980; 21: 3199
- 3b Tsuda T, Chujo Y, Nishi S, Tawara K, Saegusa T. J. Am. Chem. Soc. 1980; 102: 6381
- 3c Tsuji J, Minami I, Shimizu I. Tetrahedron Lett. 1983; 24: 1793
- 4a Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
- 4b Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
- 4c Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
- 4d Behenna DC, Mohr JT, Sherden NH, Marinescu SC, Harned AM, Tani K, Seto M, Ma S, Novák Z, Krout MR, McFadden RM, Roizen JL, Enquist JA. Jr, White DE, Levine SR, Petrova KV, Iwashita A, Virgil SC, Stoltz BM. Chem. Eur. J. 2011; 17: 14199
- 5 Yoshida M, Nozaki T, Nemoto T, Hamada Y. Tetrahedron 2013; 69: 9609
- 6a Trost BM, Ariza X. Angew. Chem. Int. Ed. 1997; 36: 2635
- 6b Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 1999; 38: 1468
- 6c Kaneyama T, Yoshida K, Miyabe H, Takemoto Y. Angew. Chem. Int. Ed. 2003; 42: 2054
- 6d Zhang K, Peng Q, Hou X.-LWu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
- 6e Trost BM, Lehr K, Michaelis DJ, Xu J, Buckl AK. J. Am. Chem. Soc. 2010; 132: 8915
- 6f Meletis P, Patil M, Thiel W, Frank W, Braun M. Chem. Eur. J. 2011; 17: 11243
- 6g Chen W, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 15249
- 6h Trost BM, Michaelis DJ, Charpentier J, Xu J. Angew. Chem. Int. Ed. 2012; 51: 204
- 6i Yoshida M, Higuchi M, Shishido K. Org. Lett. 2009; 11: 4752
- 6j Kinouchi W, Saeki R, Kawashima H, Kobayashi Y. Tetrahedron Lett. 2015; 56: 2265
- 7a Burgess K. Tetrahedron Lett. 1985; 26: 3049
- 7b Hayashi T, Yamamoto A, Ito Y. Tetrahedron Lett. 1988; 29: 669
- 7c Franzone G, Carle S, Dorizon P, Ollivier J, Salaün J. Synlett 1996; 1067
- 7d Gnamm C, Föster S, Miller N, Brödner K, Helmchen G. Synlett 2007; 790
- 7e Shintani R, Park S, Hayashi T. J. Am. Chem. Soc. 2007; 129: 14866
- 7f Liu W, Zhu X.-Z, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 8734
- 8a Shuto S, Ono S, Hase Y, Kamiyama N, Matsuda A. Tetrahedron Lett. 1996; 37: 641
- 8b Shuto S, Ono S, Hase Y, Kamiyama N, Takeda H, Yamashita K, Matsuda A. J. Org. Chem. 1996; 61: 915
- 8c Doyle MP, Davies SB, Hu W. Org. Lett. 2000; 2: 1145
- 8d Doyle MP, Hu W. Adv. Synth. Catal. 2001; 343: 299
- 8e Kazuta Y, Tsujita R, Ogawa K, Hokonohara T, Yamashita K, Morino K, Matsuda A, Shuto S. Bioorg. Med. Chem. 2002; 10: 1777
- 8f Alliot J, Gravel E, Pillon F, Buisson D.-A, Nicolas M, Doris E. Chem. Commun. 2012; 48: 8111
- 9a Xie X, Yue G, Tang S, Huo X, Liang Q. Org. Lett. 2005; 7: 4057
- 9b Moreau B, Charette AB. J. Am. Chem. Soc. 2005; 127: 18014
- 9c Okamoto N, Sasaki M, Kawahata M, Yamaguchi K, Takeda K. Org. Lett. 2006; 8: 1889
- 9d Lindsay VN. G, Lin W, Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
- 9e Goudreau SR, Marcoux D, Charette AB. J. Org. Chem. 2009; 74: 470
- 9f Deng C, Wang L.-J, Zhu J, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 11620
- 9g Alford JS, Davies HM. L. Org. Lett. 2012; 14: 6020
- 9h Hoshiya N, Kobayashi T, Arisawa M, Shuto S. Org. Lett. 2013; 15: 6202
- 9i Xu X, Zhu S, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2013; 52: 11857
- 9j Mąkosza M, Bester K, Cmoch P. J. Org. Chem. 2015; 80: 5436
- 9k Chen L, Bovee MO, Lemma BE, Keithley KS. M, Pilson SL, Coleman MG, Mack J. Angew. Chem. Int. Ed. 2015; 54: 11084
- 10 Yamanoi T, Iwai Y, Inazu T. J. Carbohydr. Chem. 1998; 17: 819
- 11a Wang Y.-H, Zhu L.-L, Zhang Y.-X, Chen Z. Chem. Commun. 2010; 46: 577
- 11b Chiarucci M, Locritani M, Cera G, Bandini M. Beilstein J. Org. Chem. 2011; 7: 1198
- 12 Less-satisfactory results were obtained when the same reaction was performed by using other transition-metal catalysts, such as Ir or Pt catalysts.
- 13a Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
- 13b Pellissier H. Tetrahedron 2008; 64: 7041
- 13c Goudreau SR, Charette AB. Angew. Chem. Int. Ed. 2010; 49: 486
- 14 For a review on the chiral MOP ligand, see: Hayashi T. Acc. Chem. Res. 2000; 33: 354
- 15 The absolute configuration of (–)-3a was determined to be 1S,2S by conversion into the known (–)-(1S,5R)-5. Synthetic sample: [α]D 27 –44.7 (c; 0.65, MeOH, 55% ee); Lit. [α]D 30 –78.5 (c 1.42, MeOH, 96% ee); see ref. 8b.
- 16 Treatment of 7 under the optimized conditions [Pd(dba)2 (5 mol%), Ph3P (6 mol%), THF, 30 °C, 6 h] also resulted in a messy reaction. We could not isolate cyclopropane derivative 3a or 3a′, and a linear dienyl compound, formed through a β-hydride elimination of the π-allylpalladium(II) intermediate, was obtained as the major product.
- 17 Zhao L, Lu X, Xu W. J. Org. Chem. 2005; 70: 4059
- 18 Yip SF, Cheung HY, Zhou Z, Kwong FY. Org. Lett. 2007; 9: 3469
- 19 Uozumi Y, Tanahashi A, Lee S.-Y, Hayashi T. J. Org. Chem. 1993; 58: 1945
For reviews, see:
For α-amino ester derivatives as nucleophiles, see:
For ester enolate equivalents as nucleophiles, see:
For α-aryl esters as nucleophiles, see:
For transition-metal-catalyzed intramolecular allylic alkylations to synthesize trisubstituted cyclopropanes by using malonate derivatives as substrates, see:
See also:
For representative examples of the synthesis of milnacipran and related compounds, see:
For recent representative examples of syntheses of trisubstituted cyclopropane derivatives, see:
For reviews on stereoselective synthesis of cyclopropane derivatives, see: