Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(03): 404-408
DOI: 10.1055/s-0035-1560825
DOI: 10.1055/s-0035-1560825
letter
Microwave-Assisted Nickel-Catalyzed One-Pot Synthesis of 2,4,5-Trisubstituted Imidazoles
Further Information
Publication History
Received: 27 July 2015
Accepted after revision: 04 October 2015
Publication Date:
30 November 2015 (online)
Abstract
A novel, highly efficient, and one-pot microwave-assisted synthesis of 2,4,5-trisubstituted imidazoles using a newly developed Schiff’s base complex nickel catalyst (Ni-C) is described. The approach involves the reaction of various aldehydes with benzil and ammonium acetate in the presence of the Ni-C catalyst to furnish cyclized products in excellent yields. The Ni-C catalyst exhibited remarkable catalytic activity with respect to the reaction time in the microwave reactor. The catalyst could be easily recovered by simple filtration and reused.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560825.
- Supporting Information
-
References and Notes
- 1a Shalini K, Sharma PK, Kumar N. Chem. Sin. 2010; 1: 36
- 1b Luca LD. Curr. Med. Chem. 2006; 13: 1
- 1c Ho JZ, Mohareb RM, Ahn JH, Sim TB, Rapoport H. J. Org. Chem. 2003; 68: 109
- 2a Zhang L, Peng XM, Guri LV, Geng RX, Zhou CH. Med. Res. Rev. 2014; 34: 340
- 2b Bhatnagar A, Sharma PK, Kumar N. Int. J. Pharm. Tech. Res. 2011; 3: 268
- 2c Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
- 3a Wong KK. Recent Pat. Anti-Cancer Drug Discovery 2009; 4: 28
- 3b Leister C, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
- 4 Mjalli AM. M, Sarshar S. US 570082619, 1997 ; Chem. Abstr. 1998, 128, 88918a
- 5 Misono M. Chem. Commun. 2001; 13: 1141
- 6 Blank JW, Durant GJ, Emmett J, Ganellin CR. Nature (London, U.K.) 1974; 248: 65
- 7 Ucucu U, Karaburun NG, Iskdag I. Farmaco 2001; 56: 285
- 8 Grimmett MR In Comprehensive Heterocyclic Chemistry II. Katritzky AR, Ress CW, Schriven EF. Pergamon Press; Oxford: 1996
- 9a Van-Leusen AM, Wildeman J, Oldenziel OH. J. Org. Chem. 1977; 42: 1153
- 9b Lee HB, Balasubramanian S. Org. Lett. 2000; 2: 314
- 10a Zaman S, Mitsuru K, Abell AD. Org. Lett. 2005; 7: 609
- 10b Frantz DF, Morency L, Soheili A, Murry JA, Grabowski EJ. J, Tillyer RD. Org. Lett. 2004; 6: 843
- 10c Illgen K, Nerdinger S, Behnke D, Friedrich C. Org. Lett. 2005; 7: 39
- 11a Tan KL, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2001; 123: 2685
- 11b Sezen B, Sames D. J. Am. Chem. Soc. 2003; 125: 10580
- 11c Fukumoto Y, Sawada K, Hagaihara M, Chatani N, Murai S. Angew. Chem. Int. Ed. 2002; 41: 2779
- 12 Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry . Pergamon Press; Oxford: 2000
- 13 Langhammer I, Erker T. Heterocycles 2005; 65: 2721
- 14a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 14b Thomson LA, Ellman JA. Chem. Rev. 1996; 96: 555
- 15a Masquelin T, Bui H, Stephenson G, Schwerkoske J, Hulme C. Tetrahedron Lett. 2006; 47: 2989
- 15b Huma HZ. S, Halder R, Kalra SS, Das J, Iqbal J. Tetrahedron Lett. 2002; 43: 6485
- 15c Bhat RP, Raje VP, Alexander VM, Patil SB, Samant SD. Tetrahedron Lett. 2005; 46: 4801
- 16 Gibson SE, Stevenazzi A. Angew. Chem. Int. Ed. 2003; 42: 1800
- 17 Shore NE. Chem. Rev. 1988; 88: 1081
- 18 Beller M, Eckert M. Angew. Chem. Int. Ed. 2000; 39: 1010
- 19a Wie C, Li Z, Li CJ. Synth. Lett. 2004; 1472
- 19b Ng SS, Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
- 20 Sparks RB, Combs AP. Org. Lett. 2004; 6: 2473
- 21 Chary MV, Keerthysri NC, Vupallapati SS, Lingaiah N, Kantevari S. Catal. Commun. 2008; 9: 2013
- 22 Wang J, Mason R, Derveer DV, Feng K, Bu XR. J. Org. Chem. 2003; 68: 5415
- 23 Shaabani A, Rahmati A, Farhangi E, Badri Z. Catal. Commun. 2007; 8: 1149
- 24 Heravi MM, Bakhtiari K, Oskooie HA, Taheri S. J. Mol. Catal. A: Chem. 2007; 263: 279
- 25 Wang L, Wang Y, Tian H, Yao Y, Shao J, Liu B. J. Fluorine Chem. 2006; 127: 1570
- 26 Shen M, Cai C, Yi W. J. Fluorine Chem. 2008; 129: 541
- 27 Kidwai M, Mothsra P, Bansal V, Somvanshi RK, Ethayathulla AS, Dey S, Singh TP. J. Mol. Catal. A: Chem. 2007; 265: 177
- 28 Khosropour AR. Ultrason. Sonochem. 2008; 15: 659
- 29 Sharma SD, Hazarika P, Konwar D. Tetrahedron Lett. 2008; 49: 2216
- 30 Heravi MM, Sadjadi S, Oskooie HA, Hekmatshoar R, Bamoharram FF. J. Chin. Chem. Soc. 2008; 55: 1199
- 31 Sangshetti JN, Shinde DB, Kokare ND. Kotharkar S. A. Monatsh. Chem. 2008; 139-125
- 32 Mohamadi AA, Mivechi M, Kefayati H. Monatsh. Chem. 2008; 139: 935
- 33 Shaabani A, Maleki A, Behnam M. Synth. Commun. 2009; 39: 102
- 34 Wang L, Cai C. Monatsh. Chem. 2009; 140: 541
- 35 Samai S, Nandi GC, Singh P, Singh MS. Tetrahedron 2009; 65: 10155
- 36 Chundawat TS, Kumari P, Mohapatra SC, Baweja S, Nandanwar S, Chakraborty M, Bhagat S. Curr. Catal. 2015; 4: 43
- 37a Gelens E, De Kanter FJ. J, Schmitz RF, Sliedregt LA, Van Steen BJ, Kruse CG, Leurs R, Groen MB, Orru RV. A. Mol. Diversity 2006; 10: 17
- 37b Usyatinsky AY, Khmelnitsky YL. Tetrahedron Lett. 2000; 41: 5031
- 37c Safari J, Khalili SD, Banitaba SH. J. Chem. Sci. 2010; 122: 437
- 38 General Procedure for the Synthesis of Substituted 2,4,5-Triphenylimidazoles A mixture of benzil (1, 2.3 mmol), benzaldehyde (2, 2.3 mmol), NH4OAc (3, 2.8 mmol), and the catalytic amount of Ni-C (10 mol%) in EtOH (2 mL) were taken in a microwave tube (10 mL) and exposed to microwave irradiation for 15–30 min. The completion of reaction was monitored by TLC. After completion of reaction, EtOAc was added to the reaction mixture, and the catalyst was recovered by filtration. After that organic layer was washed with H2O, dried over Na2SO4, and concentrated under reduced pressure. The obtained residues were purified by column chromatography using silica gel (100–200 mesh size) in 20% EtOAc–hexane as eluent to provide the desired compound 4. Representative Spectroscopic Data Compound 4g: 1H NMR (400 MHz, DMSO): δ = 12.98 (s, 1 H), 8.29–8.27 (d, J = 8.79 Hz, 2 H), 7.85–7.83 (d, J = 8.05 Hz, 2 H), 7.55–7.36 (m, 7 H), 7.32–7.30 (t, J = 7.32 Hz, 2 H), 7.23–7.21 (t, J = 7.32 Hz, 1 H). 13C NMR (100 MHz, DMSO): δ = 144.01, 137.76, 134.84, 133.99, 130.76, 129.25, 128.76, 127.93, 127.14, 126.78, 125.80, 125.60, 123.00. IR (KBr): ν = 3432, 3025, 1621, 1325, 1131, 1064, 697 cm–1. ESI-MS: m/z = 365.54 [M + 1]. Anal. Calcd for C22H15F3N2: C, 72.52, H, 4.15; N, 7.69. Found: C, 72.31; H, 3.94; N, 7.64. Compound 4i: 1H NMR (400 MHz, DMSO): δ = 12.63 (s, 1 H), 7.97–7.94 (dd, 1 H), 7.74–7.71 (dd, 1 H), 7.49–7.38 (m, 7 H), 7.28–7.26 (t, J = 7.32 Hz, 2 H), 7.19–7.17 (t, J = 7.32 Hz, 2 H). 13C NMR (100 MHz, DMSO): δ = 155.47, 152.99, 150.29, 139.13, 137.43, 134.71, 130.50, 128.66, 127.14, 126.74, 116.99, 115.65, 107.31. IR (KBr): ν = 3442, 3068, 1614, 1604, 1490, 1185, 1061, 696 cm–1. ESI-MS: m/z = 351.29 [M + 1]. Anal. Calcd for C21H13F3N2: C, 71.99; H, 3.74; N, 8.00. Found: C, 71.63; H, 3.78; N, 7.71. Compound 4r: 1H NMR (400 MHz, DMSO): δ = 12.89 (s, 1 H), 7.76–7.74 (d, J = 6.59 Hz, 2 H), 7.54–7.38 (m, 8 H), 7.32–7.28 (t, J = 7.32 Hz, 2 H), 7.24–7.21 (m, 1 H). 13C NMR (100 MHz, DMSO): δ = 163.95, 161.65, 143.23, 137.58, 134.70, 133.50, 130.65, 128.78, 127.15, 108.12, 103.42. IR (KBr): ν = 3425, 3076, 1626, 1467, 1213, 1074, 693 cm–1. ESI-MS: m/z = 333.14 [M + 1]. Anal. Calcd for C21H14F2N2: C, 75.89; H, 4.25; N, 8.43. Found: C, 75.61; H, 3.89; N, 8.20.
- 39 Lombardino JG. DE 2155558, 1972 ; US 3772441, 1973.