Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(01): 164-168
DOI: 10.1055/s-0035-1560975
DOI: 10.1055/s-0035-1560975
letter
Continuous Flow Liquid–Liquid Separation Using a Computer-Vision Control System: The Bromination of Enaminones with N-Bromosuccinimide
Further Information
Publication History
Received: 02 October 2015
Accepted after revision: 04 November 2015
Publication Date:
07 December 2015 (online)
Dedicated to Professor Steven V. Ley, mentor and friend, on the occasion of his 70th birthday
Abstract
Incorporating open-source software components (Python, OpenCV), a computer-vision system was used to control the interface level in a gravity-based inline liquid–liquid separation device. This was used in the continuous flow bromination of a series of enaminone substrates. The main byproduct of the reaction, succinimide, was efficiently extracted into the aqueous stream, providing clean products without the need for further purification.
Key words
continous flow - liquid–liquid separation - bromination - enaminone - open source - computer-vision - OpenCV - PythonSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560975.
- Supporting Information
-
References and Notes
- 1a Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
- 1b Wegner J, Ceylan S, Kirschning A. Adv. Synth. Catal. 2012; 354: 17
- 1c Brzozowski M, O’Brien M, Ley SV, Polyzos A. Acc. Chem. Res. 2015; 48: 349
- 1d Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 1e Pathak S, Kundu A, Pramanik A. RSC Adv. 2014; 4: 10180
- 1f Ley SV. Chem. Rec. 2012; 12: 378
- 1g Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
- 1h McQuade DT, Seeberger PH. J. Org. Chem. 2013; 78: 6384
- 1i Wiles C, Watts P. Chem. Commun. 2011; 47: 6512
- 1j Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
- 1k Yoshida JI. Chem. Rec. 2010; 10: 332
- 1l Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
- 1m Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
- 2a Brandt JC, Wirth T. Beilstein J. Org. Chem. 2009; 5: 30
- 2b Muller ST. R, Wirth T. ChemSusChem 2015; 8: 245
- 2c O’Brien M, Baxendale IR, Ley SV. Org. Lett. 2010; 12: 1596
- 2d Mastronardi F, Gutmann B, Kappe CO. Org. Lett. 2013; 15: 5590
- 2e Maurya RA, Park CP, Lee JH, Kim DP. Angew. Chem. Int. Ed. 2011; 50: 5952
- 2f Malet-Sanz L, Madrzak J, Ley SV, Baxendale IR. Org. Biomol. Chem. 2010; 8: 5324
- 2g O’Brien M, Taylor N, Polyzos A, Baxendale IR, Ley SV. Chem. Sci. 2011; 2: 1250
- 2h Poh J.-S, Tran DN, Battilocchio C, Hawkins JM, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 7920
- 2i Razzaq T, Kappe CO. Chem. Asian. J. 2010; 5: 1274
- 3a Adolf WG. Mass Transfer Effects on Liquid-Phase Chemical Reaction Rates. In Homogeneous Catalysis. Luberoff BA. American Chemical Society; Washington DC: 1974. ; Advances in Chemistry Series; Vol. 70: Chap. 3,: 35
- 3b Hobbs CC, Onore MJ, Van’t Hof HA, Mesich FG, Drew EH. Ind. Eng. Chem. Prod. Res. Dev. 1972; 11: 220
- 3c Markos J, Pisu M, Morbidelli M. Comput. Chem. Eng. 1998; 22: 627
- 4a Jensen KF. Chem. Eng. Sci. 2001; 56: 293
- 4b Renken A, Kiwi-Minsker L. Adv. Catal. 2010; 53: 47
- 4c Mansur EA, Ye M, Wang Y, Dai Y. Chin. J. Chem. Eng. 2008; 16: 503
- 5a Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer RI, Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000; 3815
- 5b Alza E, Rodriguez-Escrich C, Sayalero S, Bastero A, Pericas MA. Chem. Eur. J. 2009; 15: 10167
- 5c O'Brien M, Denton R, Ley SV. Synthesis 2011; 1157
- 5d Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV. Angew. Chem. Int. Ed. 2011; 50: 1190
- 6 Lange H, Carter CF, Hopkin MD, Burke A, Goode JG, Baxendale IR, Ley SV. Chem. Sci. 2011; 2: 765
- 7a Kralj JG, Sahoo HR, Jensen KF. Lab Chip 2007; 7: 256
- 7b Atallah RH, Ruzicka J, Christian GD. Anal. Chem. 1987; 59: 2909
- 7c Castell OK, Allender CJ, Barrow DA. Lab Chip 2009; 9: 388
- 7d Kolehmainen E, Turunen I. Chem. Eng. Process. 2007; 46: 834
- 7e Hornung CH, Mackley MR, Baxendale IR, Ley SV. Org. Process Res. Dev. 2007; 11: 399
- 8 For a recent review on the use of cameras in organic synthesis, see: Ley SV, Ingham RJ, O’Brien M, Browne DL. Beilstein J. Org. Chem. 2013; 9: 1051
- 9 O’Brien M, Koos P, Browne DL, Ley SV. Org. Biomol. Chem. 2012; 10: 7031
- 10 Ingham RJ, Battilocchio C, Fitzpatrick DE, Sliwinski E, Hawkins JM, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 144
- 11 Sprecher H, Payán M, Weber M, Yilmaz G, Wille G. J. Flow Chem. 2012; 2: 20
- 12 Jirkovsky I. Can. J. Chem. 1974; 52: 55
- 13 Gerasyuto AI, Hsung RP, Sydorenko N, Slafer B. J. Org. Chem. 2005; 70: 4248
- 14 Bradski G. Dr. Dobbs J. 2000; 25: 120
- 15 For an alternative approach that relates the size of a coloured disk to the vertical distance from a camera, see: Wang TH, Lu MC, Hsu CC, Chen CC, Tan JD. Measurement 2009; 42: 604
- 16 Representative Procedure for the Formation of the Enaminones (3i) Cyclohexanedione (1.55 g, 13.8 mmol, 1 equiv) and 4-chlorobenzylamine (1.8 mL, 14.8 mmol, 1.1 equiv) were added to a flask under nitrogen. To this was added toluene (50 mL) and EtOH (2.5 mL), and the mixture was stirred at reflux for 3 h. Upon completion the solvent was removed under reduced pressure, forming a yellow-brown solid, which was recrystallised from toluene. The product was made up of yellow-brown crystals; yield 71% (2.31 g); mp 166.8–168.4 °C (lit.: 170–172 °C). 1H NMR (300 MHz, CDCl3): δ = 7.32–7.26 (2 H, m), 7.18 (J = 8.54 Hz, 2 H, m), 5.34 (1 H, br s), 5.07 (1 H, s), 4.18 (J = 5.36 Hz, 2 H, d), 2.38 (J = 6.15 Hz, 2 H, t), 2.27 (J = 6.53 Hz, 2 H, t), 1.99–1.91 (2 H, m, H-2). 13C NMR (100 MHz, CDCl3): δ = 197.4, 165.2, 135.3, 133.6, 128.9, 97.5, 46.3, 36.4, 29.5, 21.9. IR: ν = 3247 (NH), 3049, 1538 (C=O), 683 cm–1. Representative Procedure for the Continuous Flow Bromination (4i) Using the apparatus shown in Figure 3, the system was primed with CH2Cl2 and the aqueous extraction solvent for several minutes until there were no air gaps in the flow path. 3-[(4-chlorobenzyl)amino]cyclohex-2-enone (3i, 0.100 M in CH2Cl2) was loaded in to the 3 mL injection loop. NBS (0.106 M in CH2Cl2) was loaded into the 4.1 mL injection loop. The NBS loop was injected into the system 20 s prior to the substrate loop. Organic solution exiting the system was collected for 20 min. The solvent was removed under reduced pressure to afford a yellow-brown solid; yield 93% (87.5 mg): mp 121.5–122.3 °C. 1H NMR (400 MHz, CDCl3): δ = 7.32 (J = 7.43 Hz, 2 H, d), 7.18 (J = 7.65 Hz, 2 H, d), 6.12 (1 H, br s), 4.49 (J = 5.17 Hz, 2 H, d), 2.51 (J = 6.34 Hz, 2 H, t), 2.45 (J = 6.03 Hz, 2 H, t), 1.98–1.84 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 187.8, 161.0, 136.0, 133.7, 129.2, 128.0, 96.6, 46.5, 36.6, 26.7, 20.7. IR: ν = 3260 (NH), 2988, 2955, 2939, 2901, 2884, 1584 (C=O), 800, 715 cm–1.