Exp Clin Endocrinol Diabetes 2016; 124(03): 131-139
DOI: 10.1055/s-0035-1565067
Review
© Georg Thieme Verlag KG Stuttgart · New York

The Emerging Role of Sirtuin 1 in Cellular Metabolism, Diabetes Mellitus, Diabetic Kidney Disease and Hypertension

A. Guclu
1   Division of Nephrology, Kırsehir Training and Research Hospital, Kırsehir/Turkey
,
F. M. Erdur
2   Department of Internal Medicine, Division of Nephrology, N.E. University Meram School of Medicine, Konya/Turkey
,
K. Turkmen
2   Department of Internal Medicine, Division of Nephrology, N.E. University Meram School of Medicine, Konya/Turkey
› Author Affiliations
Further Information

Publication History

received 28 June 2015
revised 20 August 2015

accepted 29 September 2015

Publication Date:
20 November 2015 (online)

Abstract

Despite diagnostic and therapeutic approaches, diabetic kidney disease (DKD) is the most common cause of end-stage renal disease worldwide. Sirtuins, a group of nicotinamid adenine dinucleotide (NAD) dependent enzymes, can deacetylase target enzymes that regulate a wide variety of cellular processes regarding protein, carbohydrate and lipid metabolism, mitochondrial homeostasis and programmed cell death mechanisms including autophagy and apoptosis. Among sirtuins, sirtuin 1 (SIRT1) has been the most studied one in the pathogenesis and progression of DKD. In recent years, the relation between SIRT1 and hypertension was also evaluated.

In the present review, we aimed to represent the mechanisms of SIRT1 in glucose and lipid metabolism and in the pathogenesis of diabetes mellitus. We also sought to highlight the emerging role of SIRT1 in the pathogenesis and treatment of DKD and hypertension.

 
  • References

  • 1 Economic costs of diabetes in the U.S. In 2007. Diabetes Care 2008; 31: 596-615
  • 2 Skyler JS, Oddo C. Diabetes trends in the USA. Diabetes Metab Res Rev 2002; 18 (Suppl. 03) S21-S26
  • 3 Holman RR, Paul SK, Bethel MA et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589
  • 4 Gerstein HC, Riddle MC, Kendall DM et al. Glycemia treatment strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007; 99: 34i-43i
  • 5 Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7: 327-340
  • 6 Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004; 34: 785-796
  • 7 Nakamura K, Fuster JJ, Walsh K. Adipokines: A link between obesity and cardiovascular disease. J Cardiol 2013;
  • 8 Baehrecke EH. Autophagy: dual roles in life and death?. Nat Rev Mol Cell Biol 2005; 6: 505-510
  • 9 Kaeberlein M, Kirkland KT, Fields S et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004; 2: E296
  • 10 Guarente L, Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 2011; 364: 2235-2244
  • 11 Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417-435
  • 12 Nogueiras R, Habegger KM, Chaudhary N et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 2012; 92: 1479-1514
  • 13 Kitada M, Kume S, Takeda-Watanabe A et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013; 124: 153-164
  • 14 Vaquero A, Scher M, Erdjument-Bromage H et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 2007; 450: 440-444
  • 15 Walker AK, Yang F, Jiang K et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 2010; 24: 1403-1417
  • 16 Purushotham A, Schug TT, Xu Q et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009; 9: 327-338
  • 17 Rodgers JT, Lerin C, Gerhart-Hines Z et al. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 2008; 582: 46-53
  • 18 Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 2007; 282: 34356-34364
  • 19 Moynihan KA, Grimm AA, Plueger MM et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 105-117
  • 20 Koubova J, Guarente L. How does calorie restriction work?. Genes Dev 2003; 17: 313-321
  • 21 Nakagawa T, Lomb DJ, Haigis MC et al. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009; 137: 560-570
  • 22 McCreanor GM, Bender DA. The metabolism of high intakes of tryptophan, nicotinamide and nicotinic acid in the rat. Br J Nutr 1986; 56: 577-586
  • 23 Rodgers JT, Lerin C, Haas W et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113-118
  • 24 Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004; 117: 421-426
  • 25 Liu Y, Dentin R, Chen D et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008; 456: 269-273
  • 26 Sasaki T, Kim HJ, Kobayashi M et al. Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology 2010; 151: 2556-2566
  • 27 Puigserver P, Rhee J, Donovan J et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423: 550-555
  • 28 Koo SH, Flechner L, Qi L et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005; 437: 1109-1111
  • 29 Yeagley D, Guo S, Unterman T et al. Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of forkhead and insulin response sequences. J Biol Chem 2001; 276: 33705-33710
  • 30 Ayala JE, Streeper RS, Desgrosellier JS et al. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 1999; 48: 1885-1889
  • 31 Inoue H, Ogawa W, Ozaki M et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 2004; 10: 168-174
  • 32 Banks AS, Kon N, Knight C et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8: 333-341
  • 33 Bordone L, Cohen D, Robinson A et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6: 759-767
  • 34 Bordone L, Motta MC, Picard F et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31
  • 35 Imai S, Johnson FB, Marciniak RA et al. Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 2000; 65: 297-302
  • 36 Elchebly M, Payette P, Michaliszyn E et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548
  • 37 Sun C, Zhang F, Ge X et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6: 307-319
  • 38 Hou X, Xu S, Maitland-Toolan KA et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008; 283: 20015-20026
  • 39 Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771-776
  • 40 Li X, Zhang S, Blander G et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007; 28: 91-106
  • 41 Kemper JK, Xiao Z, Ponugoti B et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 2009; 10: 392-404
  • 42 Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci 2010; 6: 682-690
  • 43 Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212: 167-178
  • 44 Miyazaki R, Ichiki T, Hashimoto T et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2008; 28: 1263-1269
  • 45 Shinmura K, Tamaki K, Ito K et al. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2015; 308: H894-H903
  • 46 Rossier BC, Pradervand S, Schild L et al. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 2002; 64: 877-897
  • 47 Zhang D, Li S, Cruz P et al. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem 2009; 284: 20917-20926
  • 48 Zhong XL, Miao HJ, Fang ZM et al. The Effect of SIRT1 Gene Polymorphisms on Ambulatory Blood Pressure of Hypertensive Patients in the Kazakh Population. Genet Test Mol Biomarkers 2015;
  • 49 Vendrell J, Chacon MR. TWEAK: A New Player in Obesity and Diabetes. Front Immunol 2013; 4: 488
  • 50 Agrawal NK, Kant S. Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 2014; 5: 697-710
  • 51 Kitada M, Takeda A, Nagai T et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011; 2011: 908185
  • 52 Yoshizaki T, Milne JC, Imamura T et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009; 29: 1363-1374
  • 53 Liu R, Zhong Y, Li X et al. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 2014; 63: 2440-2453
  • 54 Li C, Cai F, Yang Y et al. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-beta1 pathway. Eur J Pharmacol 2010; 649: 382-389
  • 55 Li J, Qu X, Ricardo SD et al. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 2010; 177: 1065-1071
  • 56 Casalena G, Daehn I, Bottinger E. Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 2012; 32: 295-303
  • 57 Papadimitriou A, Silva KC, Peixoto EB et al. Theobromine increases NAD(+)/Sirt-1 activity and protects the kidney under diabetic conditions. Am J Physiol Renal Physiol 2015; 308: F209-F225
  • 58 Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132: 27-42
  • 59 Fujitani Y, Kawamori R, Watada H. The role of autophagy in pancreatic beta-cell and diabetes. Autophagy 2009; 5: 280-282
  • 60 Tanaka Y, Kume S, Kitada M et al. Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res 2012; 2012: 628978
  • 61 Hasegawa K, Wakino S, Simic P et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 2013; 19: 1496-1504
  • 62 Bible E. Diabetic nephropathy: Sirt1 attenuates diabetic albuminuria. Nat Rev Nephrol 2013; 9: 696
  • 63 Ruderman NB, Xu XJ, Nelson L et al. AMPK and SIRT1: a long-standing partnership?. Am J Physiol Endocrinol Metab 2010; 298: E751-E760
  • 64 Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40: 280-293
  • 65 Polak-Jonkisz D, Laszki-Szczachor K, Rehan L et al. Nephroprotective action of sirtuin 1 (SIRT1). J Physiol Biochem 2013; 69: 957-961
  • 66 Geetha T, Zheng C, Vishwaprakash N et al. Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein. J Biol Chem 2012; 287: 29672-29678
  • 67 Hartleben B, Godel M, Meyer-Schwesinger C et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010; 120: 1084-1096
  • 68 Ding DF, You N, Wu XM et al. Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK. Am J Nephrol 2010; 31: 363-374
  • 69 Kitada M, Kume S, Imaizumi N et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 2011; 60: 634-643
  • 70 Cammisotto PG, Londono I, Gingras D et al. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol 2008; 294: F881-F889
  • 71 Lee MJ, Feliers D, Mariappan MM et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 2007; 292: F617-F627
  • 72 Cammisotto PG, Bendayan M. Adiponectin stimulates phosphorylation of AMP-activated protein kinase alpha in renal glomeruli. J Mol Histol 2008; 39: 579-584
  • 73 Sharma K, Ramachandrarao S, Qiu G et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118: 1645-1656
  • 74 Dugan LL, You YH, Ali SS et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 2013; 123: 4888-4899
  • 75 Um JH, Park SJ, Kang H et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59: 554-563
  • 76 Timmers S, Konings E, Bilet L et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 2011; 14: 612-622
  • 77 Caton PW, Nayuni NK, Kieswich J et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205: 97-106
  • 78 Zheng Z, Chen H, Li J et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61: 217-228
  • 79 Harada H, Andersen JS, Mann M et al. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001; 98: 9666-9670
  • 80 Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 2012; 61: 23-29
  • 81 Lloberas N, Cruzado JM, Franquesa M et al Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 2006; 17: 1395-1404
  • 82 Mori H, Inoki K, Masutani K et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 2009; 384: 471-475
  • 83 Godel M, Hartleben B, Herbach N et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 2011; 121: 2197-2209
  • 84 Inoki K, Mori H, Wang J et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011; 121: 2181-2196
  • 85 Yang Y, Wang J, Qin L et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 2007; 27: 495-502
  • 86 Kume S, Uzu T, Horiike K et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010; 120: 1043-1055
  • 87 Cohen HY, Miller C, Bitterman KJ et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390-392
  • 88 Tikoo K, Singh K, Kabra D et al. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic Res 2008; 42: 397-404
  • 89 Chuang PY, Xu J, Dai Y et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells. Am J Pathol 2014; 184: 1940-1956
  • 90 Kume S, Haneda M, Kanasaki K et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med 2006; 40: 2175-2182
  • 91 Kume S, Haneda M, Kanasaki K et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 2007; 282: 151-158
  • 92 Zhuo L, Fu B, Bai X et al. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell Physiol Biochem 2011; 27: 681-690
  • 93 Chuang PY, Dai Y, Liu R et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One 2011; 6: e23566
  • 94 He W, Wang Y, Zhang MZ et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010; 120: 1056-1068
  • 95 Liu GC, Oudit GY, Fang F et al. Angiotensin-(1–7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. Am J Physiol Renal Physiol 2012; 302: F784-F790
  • 96 Gava E, Samad-Zadeh A, Zimpelmann J et al. Angiotensin-(1–7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrol Dial Transplant 2009; 24: 1766-1773
  • 97 Giani JF, Burghi V, Veiras LC et al. Angiotensin-(1–7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 2012; 302: F1606-F1615
  • 98 Mori J, Patel VB, Ramprasath T et al. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol 2014; 306: F812-F821
  • 99 Hasegawa K, Wakino S, Yoshioka K et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun 2008; 372: 51-56
  • 100 Hasegawa K, Wakino S, Yoshioka K et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 2010; 285: 13045-13056
  • 101 Kim DH, Jung YJ, Lee JE et al. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol Renal Physiol 2011; 301: F427-F435
  • 102 Howitz KT, Bitterman KJ, Cohen HY et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425: 191-196
  • 103 Cote CD, Rasmussen BA, Duca FA et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med 2015; 21: 498-505
  • 104 Ido Y. Pyridine nucleotide redox abnormalities in diabetes. Antioxid Redox Signal 2007; 9: 931-942
  • 105 Yoshino J, Mills KF, Yoon MJ et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14: 528-536
  • 106 Sauve AA. NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther 2008; 324: 883-893
  • 107 Madiraju AK, Erion DM, Rahimi Y et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510: 542-546
  • 108 Duca FA, Cote CD, Rasmussen BA et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 2015; 21: 506-511
  • 109 Civitarese AE, Carling S, Heilbronn LK et al Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 2007; 4: e76
  • 110 Shang G, Gao P, Zhao Z et al. 3,5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim Biophys Acta 2013; 1832: 674-684
  • 111 Marampon F, Gravina GL, Scarsella L et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis. J Hypertens 2013; 31: 1972-1983
  • 112 Kitada M, Kume S, Kanasaki K et al Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets 2013; 14: 622-636