Subscribe to RSS
DOI: 10.1055/s-0035-1565913
Fat Suppression with Dixon Techniques in Musculoskeletal Magnetic Resonance Imaging: A Pictorial Review
Publication History
Publication Date:
19 November 2015 (online)
Abstract
Dixon techniques are part of the methods used to suppress the signal of fat in MRI. They present many advantages compared with other fat suppression techniques including (1) the robustness of fat signal suppression, (2) the possibility to combine these techniques with all types of sequences (gradient echo, spin echo) and different weightings (T1-, T2-, proton density-, intermediate-weighted sequences), and (3) the availability of images both with and without fat suppression from one single acquisition. These advantages have opened many applications in musculoskeletal imaging. We first review the technical aspects of Dixon techniques including their advantages and disadvantages. We then illustrate their applications for the imaging of different body parts, as well as for tumors, neuromuscular disorders, and the imaging of metallic hardware.
Keywords
magnetic resonance imaging - fat suppression technique - fat - muscles - tendons - bone marrow - metal artifacts - tumor - joint* P. Omoumi and J.L. Drape contributed equally to this work.
-
References
- 1 Huang M, Schweitzer ME. The role of radiology in the evolution of the understanding of articular disease. Radiology 2014; 273 (2, Suppl): S1-S22
- 2 Mohr A, Roemer FW, Genant HK, Liess C. Using fat-saturated proton density-weighted MR imaging to evaluate articular cartilage. AJR Am J Roentgenol 2003; 181 (1) 280-281 ; author reply 281–282
- 3 Del Grande F, Santini F, Herzka DA , et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (1) 217-233
- 4 Waldschmidt JG, Rilling RJ, Kajdacsy-Balla AA, Boynton MD, Erickson SJ. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics 1997; 17 (6) 1387-1402
- 5 Drapé JL, Pessis E, Sarazin L, Minoui A, Godefroy D, Chevrot A. MRI and articular cartilage [in French]. J Radiol 1998; 79 (5) 391-402
- 6 Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999; 19 (2) 373-382
- 7 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153 (1) 189-194
- 8 Eggers H, Börnert P. Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 2014; 40 (2) 251-268
- 9 Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2010; 31 (1) 4-18
- 10 Aoki T, Yamashita Y, Oki H , et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) of the wrist and finger at 3T: comparison with chemical shift selective fat suppression images. J Magn Reson Imaging 2013; 37 (3) 733-738
- 11 Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol 2014; 24 (6) 1366-1375
- 12 Wren TA, Bluml S, Tseng-Ong L, Gilsanz V. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol 2008; 190 (1) W8-W12
- 13 Hollak C, Maas M, Akkerman E, den Heeten A, Aerts H. Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow responses to individualized doses of enzyme supplementation therapy in type 1 Gaucher disease. Blood Cells Mol Dis 2001; 27 (6) 1005-1012
- 14 Maas M, van Kuijk C, Stoker J , et al. Quantification of bone involvement in Gaucher disease: MR imaging bone marrow burden score as an alternative to Dixon quantitative chemical shift MR imaging—initial experience. Radiology 2003; 229 (2) 554-561
- 15 Machann J, Pereira PL, Einsele H, Kanz L, Claussen CD, Schick F. The MR characterization of the composition of the hematopoietic bone marrow. The findings in generalized neoplasms and the monitoring of therapy [in German]. Radiologe 2000; 40 (8) 700-709
- 16 Lee YH, Kim S, Lim D, Song HT, Suh JS. MR Quantification of the fatty fraction from T2*-corrected Dixon fat/water separation volume-interpolated breathhold examination (VIBE) in the assessment of muscle atrophy in rotator cuff tears. Acad Radiol 2015; 22 (7) 909-917
- 17 Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991; 18 (2) 371-383
- 18 Brandão S, Seixas D, Ayres-Basto M , et al. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol 2013; 68 (11) e617-e623
- 19 Llopis E, Montesinos P, Guedez MT, Aguilella L, Cerezal L. Normal shoulder MRI and MR arthrography: anatomy and technique. Semin Musculoskelet Radiol 2015; 19 (3) 212-230
- 20 Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics 2006; 26 (4) 1045-1065
- 21 Oh JH, Kim SH, Choi JA, Kim Y, Oh CH. Reliability of the grading system for fatty degeneration of rotator cuff muscles. Clin Orthop Relat Res 2010; 468 (6) 1558-1564
- 22 Omoumi P, Bafort AC, Dubuc JE, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology 2012; 264 (3) 812-822
- 23 Reeder SB, Yu H, Johnson JW , et al. T1- and T2-weighted fast spin-echo imaging of the brachial plexus and cervical spine with IDEAL water-fat separation. J Magn Reson Imaging 2006; 24 (4) 825-832
- 24 Yu JS, Tanner JR. Considerations in metatarsalgia and midfoot pain: an MR imaging perspective. Semin Musculoskelet Radiol 2002; 6 (2) 91-104
- 25 Studler U, Mengiardi B, Bode B , et al. Fibrosis and adventitious bursae in plantar fat pad of forefoot: MR imaging findings in asymptomatic volunteers and MR imaging-histologic comparison. Radiology 2008; 246 (3) 863-870
- 26 Llauger J, Palmer J, Monill JM, Franquet T, Bagué S, Rosón N. MR imaging of benign soft-tissue masses of the foot and ankle. Radiographics 1998; 18 (6) 1481-1498
- 27 Freyschmidt J. Challenging Cases in Musculoskeletal Imaging. Stuttgart, Germany: Thieme; 2015
- 28 Vande Berg B, Malghem J, Lecouvet F, Larbi A, Perlepe V, Pavard X. Plaidoyer pour une utilisation optimale de l'annulation du signal de la graisse. In: Société d'imagerie musculo-squelettique, ed., IRM musculo-squelettique de la clinique à la technique: techniques, pièges et astuces, ceintures scapulaire et pelvienne, rachis et pathologie tumorale, genou, IRM des extrémités. Montpellier, France: Sauramps Médical; 2014: 47-56
- 29 Ozsarlak O, Parizel PM, De Schepper AM, De Jonghe P, Martin JJ. Whole-body MR screening of muscles in the evaluation of neuromuscular diseases. Eur Radiol 2004; 14 (8) 1489-1493
- 30 Shelly MJ, Bolster F, Foran P, Crosbie I, Kavanagh EC, Eustace SJ. Whole-body magnetic resonance imaging in skeletal muscle disease. Semin Musculoskelet Radiol 2010; 14 (1) 47-56
- 31 Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 2007; 36 (12) 1109-1119
- 32 Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 2007; 25 (2) 433-440
- 33 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (3) 547-555