Semin Thromb Hemost 2016; 42(04): 445-454
DOI: 10.1055/s-0036-1571343
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Newly-Recognized Roles of Factor XIII in Thrombosis

James R. Byrnes
1   Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
,
Alisa S. Wolberg
1   Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
07 April 2016 (online)

Abstract

Arterial and venous thromboses are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII cross-links fibrin and promotes thrombus stability. Recent studies have provided new information about FXIII activity during coagulation and its effects on clot composition and function. These findings reveal newly-recognized roles for FXIII in thrombosis. Herein, we review published literature on FXIII biology and effects on fibrin structure and stability, epidemiologic data associating FXIII with thrombosis, and evidence from animal models indicating FXIII has an essential role in determining thrombus stability, composition, and size.

 
  • References

  • 1 Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesth Analg 2012; 114 (2) 275-285
  • 2 Wolberg AS, Rosendaal FR, Weitz JI , et al. Venous thrombosis. Nature Reviews Disease Primers 2015; 1: 15006
  • 3 Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev 2011; 91 (3) 931-972
  • 4 Fickenscher K, Aab A, Stüber W. A photometric assay for blood coagulation factor XIII. Thromb Haemost 1991; 65 (5) 535-540
  • 5 Schroeder V, Kohler HP. Factor XIII: structure and function. Semin Thromb Hemost 2016; 42 (4) 422-428
  • 6 Greenberg CS, Shuman MA. The zymogen forms of blood coagulation factor XIII bind specifically to fibrinogen. J Biol Chem 1982; 257 (11) 6096-6101
  • 7 Siebenlist KR, Meh DA, Mosesson MW. Plasma factor XIII binds specifically to fibrinogen molecules containing γ chains. Biochemistry 1996; 35 (32) 10448-10453
  • 8 Moaddel M, Farrell DH, Daugherty MA, Fried MG. Interactions of human fibrinogens with factor XIII: roles of calcium and the γ' peptide. Biochemistry 2000; 39 (22) 6698-6705
  • 9 Gersh KL, Lord ST. An investigation of factor XIII binding to recombinant γ'/γ' and γ/γ' fibrinogen. Blood 2006; 108 (11) : Abstract 1705
  • 10 Credo RB, Curtis CG, Lorand L. α-chain domain of fibrinogen controls generation of fibrinoligase (coagulation factor XIIIa). Calcium ion regulatory aspects. Biochemistry 1981; 20 (13) 3770-3778
  • 11 Smith KA, Adamson PJ, Pease RJ , et al. Interactions between factor XIII and the alphaC region of fibrinogen. Blood 2011; 117 (12) 3460-3468
  • 12 Aleman MM, Byrnes JR, Wang JG , et al. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124 (8) 3590-3600
  • 13 Souri M, Osaki T, Ichinose A. The non-catalytic B subunit of coagulation factor XIII accelerates fibrin cross-linking. J Biol Chem 2015; 290 (19) 12027-12039
  • 14 Katona E E, Ajzner E, Tóth K, Kárpáti L, Muszbek L. Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates. J Immunol Methods 2001; 258 (1–2) 127-135
  • 15 Elgheznawy A, Shi L, Hu J , et al. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res 2015; 117 (2) 157-165
  • 16 Mitchell JL, Lionikiene AS, Fraser SR, Whyte CS, Booth NA, Mutch NJ. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood 2014; 124 (26) 3982-3990
  • 17 Takagi T, Doolittle RF. Amino acid sequence studies on factor XIII and the peptide released during its activation by thrombin. Biochemistry 1974; 13 (4) 750-756
  • 18 Schroeder V, Vuissoz JM, Caflisch A, Kohler HP. Factor XIII activation peptide is released into plasma upon cleavage by thrombin and shows a different structure compared to its bound form. Thromb Haemost 2007; 97 (6) 890-898
  • 19 Hornyak TJ, Shafer JA. Role of calcium ion in the generation of factor XIII activity. Biochemistry 1991; 30 (25) 6175-6182
  • 20 Credo RB, Curtis CG, Lorand L. Ca2+-related regulatory function of fibrinogen. Proc Natl Acad Sci U S A 1978; 75 (9) 4234-4237
  • 21 Hornyak TJ, Shafer JA. Interactions of factor XIII with fibrin as substrate and cofactor. Biochemistry 1992; 31 (2) 423-429
  • 22 Ando Y, Imamura S, Yamagata Y , et al. Platelet factor XIII is activated by calpain. Biochem Biophys Res Commun 1987; 144 (1) 484-490
  • 23 Muszbek L, Polgár J, Boda Z. Platelet factor XIII becomes active without the release of activation peptide during platelet activation. Thromb Haemost 1993; 69 (3) 282-285
  • 24 Smith KA, Pease RJ, Avery CA , et al. The activation peptide cleft exposed by thrombin cleavage of FXIII-A(2) contains a recognition site for the fibrinogen α chain. Blood 2013; 121 (11) 2117-2126
  • 25 Ortner E, Schroeder V, Walser R, Zerbe O, Kohler HP. Sensitive and selective detection of free FXIII activation peptide: a potential marker of acute thrombotic events. Blood 2010; 115 (24) 5089-5096
  • 26 Finlayson JS, Aronson DL. Crosslinking of rabbit fibrin in vivo. Thromb Diath Haemorrh 1974; 31 (3) 435-438
  • 27 Robinson BR, Houng AK, Reed GL. Catalytic life of activated factor XIII in thrombi. Implications for fibrinolytic resistance and thrombus aging. Circulation 2000; 102 (10) 1151-1157
  • 28 Bagoly Z, Haramura G, Muszbek L. Down-regulation of activated factor XIII by polymorphonuclear granulocyte proteases within fibrin clot. Thromb Haemost 2007; 98 (2) 359-367
  • 29 Hedner U, Johansson L, Nilsson IM. Effects of porcine plasmin on the coagulation and fibrinolytic systems in humans. Blood 1978; 51 (1) 157-164
  • 30 Rider DM, McDonagh J. Resistance of factor XIII to degradation or activation by plasmin. Biochim Biophys Acta 1981; 675 (2) 171-177
  • 31 Hur WS, Mazinani N, Lu XJ , et al. Coagulation factor XIIIa is inactivated by plasmin. Blood 2015; 126 (20) 2329-2337
  • 32 Doiphode PG, Malovichko MV, Mouapi KN, Maurer MC. Evaluating factor XIII specificity for glutamine-containing substrates using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay. Anal Biochem 2014; 457: 74-84
  • 33 Cleary DB, Maurer MC. Characterizing the specificity of activated Factor XIII for glutamine-containing substrate peptides. Biochim Biophys Acta 2006; 1764 (7) 1207-1217
  • 34 Nikolajsen CL, Dyrlund TF, Poulsen ET, Enghild JJ, Scavenius C. Coagulation factor XIIIa substrates in human plasma: identification and incorporation into the clot. J Biol Chem 2014; 289 (10) 6526-6534
  • 35 Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J 1999; 77 (5) 2813-2826
  • 36 Collet JP, Moen JL, Veklich YI , et al. The alphaC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 2005; 106 (12) 3824-3830
  • 37 Standeven KF, Carter AM, Grant PJ , et al. Functional analysis of fibrin γ-chain cross-linking by activated factor XIII: determination of a cross-linking pattern that maximizes clot stiffness. Blood 2007; 110 (3) 902-907
  • 38 Hethershaw EL, Cilia La Corte AL, Duval C , et al. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost 2014; 12 (2) 197-205
  • 39 Byrnes JR, Duval C, Wang Y , et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood 2015; 126 (16) 1940-1948
  • 40 Kurniawan NA, Grimbergen J, Koopman J, Koenderink GH. Factor XIII stiffens fibrin clots by causing fiber compaction. J Thromb Haemost 2014; 12 (10) 1687-1696
  • 41 van Giezen JJ, Minkema J, Bouma BN, Jansen JW. Cross-linking of α 2-antiplasmin to fibrin is a key factor in regulating blood clot lysis: species differences. Blood Coagul Fibrinolysis 1993; 4 (6) 869-875
  • 42 Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through α2-antiplasmin cross-linking. Blood 2011; 117 (23) 6371-6374
  • 43 Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem 1998; 273 (42) 27220-27224
  • 44 Jensen PH, Lorand L, Ebbesen P, Gliemann J. Type-2 plasminogen-activator inhibitor is a substrate for trophoblast transglutaminase and factor XIIIa. Transglutaminase-catalyzed cross-linking to cellular and extracellular structures. Eur J Biochem 1993; 214 (1) 141-146
  • 45 Reed GL, Matsueda GR, Haber E. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of α2-antiplasmin to fibrin. Thromb Haemost 1992; 68 (3) 315-320
  • 46 Collet JP, Shuman H, Ledger RE, Lee S, Weisel JW. The elasticity of an individual fibrin fiber in a clot. Proc Natl Acad Sci U S A 2005; 102 (26) 9133-9137
  • 47 Liu W, Jawerth LM, Sparks EA , et al. Fibrin fibers have extraordinary extensibility and elasticity. Science 2006; 313 (5787) 634
  • 48 Houser JR, Hudson NE, Ping L , et al. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers. Biophys J 2010; 99 (9) 3038-3047
  • 49 Glover CJ, McIntire LV, Brown III CH, Natelson EA. Rheological properties of fibrin clots. Effects of fibrinogen concentration, Factor XIII deficiency, and Factor XIII inhibition. J Lab Clin Med 1975; 86 (4) 644-656
  • 50 Ryan EA, Mockros LF, Stern AM, Lorand L. Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology. Biophys J 1999; 77 (5) 2827-2836
  • 51 Helms CC, Ariëns RA, Uitte de Willige S, Standeven KF, Guthold M. α-α Cross-links increase fibrin fiber elasticity and stiffness. Biophys J 2012; 102 (1) 168-175
  • 52 Duval C, Allan P, Connell SD, Ridger VC, Philippou H, Ariëns RA. Roles of fibrin α- and γ-chain specific cross-linking by FXIIIa in fibrin structure and function. Thromb Haemost 2014; 111 (5) 842-850
  • 53 Cohen I, Gerrard JM, White JG. Ultrastructure of clots during isometric contraction. J Cell Biol 1982; 93 (3) 775-787
  • 54 Endo Y, Takahashi K, Mamiya S, Satoh M, Matsuda M. Factor XIII deficiency associated with Klippel-Weber disease, platelet dysfunction and cryofibrinogenemia. Acta Haematol 1983; 69 (6) 398-403
  • 55 Kasahara K, Souri M, Kaneda M, Miki T, Yamamoto N, Ichinose A. Impaired clot retraction in factor XIII A subunit-deficient mice. Blood 2010; 115 (6) 1277-1279
  • 56 Hanna M. Congenital deficiency of factor 13: report of a family from Newfoundland with associated mild deficiency of factor XII. Pediatrics 1970; 46 (4) 611-619
  • 57 Rao KM, Newcomb TF. Clot retraction in a factor XIII free system. Scand J Haematol 1980; 24 (2) 142-148
  • 58 Jelenska M, Kopeć M, Breddin K. On the retraction of collagen and fibrin induced by normal, defective and modified platelets. Haemostasis 1985; 15 (3) 169-175
  • 59 Aleman MM, Holle LA, Stember KG, Devette CI, Monroe DM, Wolberg AS. Cystamine preparations exhibit anticoagulant activity. PLoS ONE 2015; 10 (4) e0124448
  • 60 Cines DB, Lebedeva T, Nagaswami C , et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603
  • 61 Hasegawa G, Suwa M, Ichikawa Y , et al. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 2003; 373 (Pt 3): 793-803
  • 62 Lahav J, Karniel E, Bagoly Z, Sheptovitsky V, Dardik R, Inbal A. Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 2009; 101 (5) 840-844
  • 63 Furie B, Flaumenhaft R. Thiol isomerases in thrombus formation. Circ Res 2014; 114 (7) 1162-1173
  • 64 Chiu J, Passam F, Butera D, Hogg PJ. Protein disulfide isomerase in thrombosis. Semin Thromb Hemost 2015; 41 (7) 765-773
  • 65 Muszbek L, Bagoly Z, Bereczky Z, Katona E. The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc Hematol Agents Med Chem 2008; 6 (3) 190-205
  • 66 Bereczky Z, Muszbek L. Factor XIII and venous thromboembolism. Semin Thromb Hemost 2011; 37 (3) 305-314
  • 67 Bagoly Z, Koncz Z, Hársfalvi J, Muszbek L. Factor XIII, clot structure, thrombosis. Thromb Res 2012; 129 (3) 382-387
  • 68 Muszbek L. Deficiency causing mutations and common polymorphisms in the factor XIII-A gene. Thromb Haemost 2000; 84 (4) 524-527
  • 69 Wartiovaara U, Mikkola H, Szôke G , et al. Effect of Val34Leu polymorphism on the activation of the coagulation factor XIII-A. Thromb Haemost 2000; 84 (4) 595-600
  • 70 Balogh I, Szôke G, Kárpáti L , et al. Val34Leu polymorphism of plasma factor XIII: biochemistry and epidemiology in familial thrombophilia. Blood 2000; 96 (7) 2479-2486
  • 71 Ariëns RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000; 96 (3) 988-995
  • 72 Catto AJ, Kohler HP, Coore J, Mansfield MW, Stickland MH, Grant PJ. Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood 1999; 93 (3) 906-908
  • 73 Franco RF, Reitsma PH, Lourenço D , et al. Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 1999; 81 (5) 676-679
  • 74 Margaglione M, Bossone A, Brancaccio V, Ciampa A, Di Minno G. Factor XIII Val34Leu polymorphism and risk of deep vein thrombosis. Thromb Haemost 2000; 84 (6) 1118-1119
  • 75 Kohler HP, Stickland MH, Ossei-Gerning N, Carter A, Mikkola H, Grant PJ. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998; 79 (1) 8-13
  • 76 Aleksic N, Ahn C, Wang YW , et al. Factor XIIIA Val34Leu polymorphism does not predict risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 2002; 22 (2) 348-352
  • 77 Reiner AP, Heckbert SR, Vos HL , et al. Genetic variants of coagulation factor XIII, postmenopausal estrogen therapy, and risk of nonfatal myocardial infarction. Blood 2003; 102 (1) 25-30
  • 78 Atherosclerosis, Thrombosis, and Vascular Biology Italian Study Group. No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age. Circulation 2003; 107 (8) 1117-1122
  • 79 Vokó Z, Bereczky Z, Katona E, Adány R, Muszbek L. Factor XIII Val34Leu variant protects against coronary artery disease. A meta-analysis. Thromb Haemost 2007; 97 (3) 458-463
  • 80 Wells PS, Anderson JL, Scarvelis DK, Doucette SP, Gagnon F. Factor XIII Val34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis. Am J Epidemiol 2006; 164 (2) 101-109
  • 81 Van Hylckama Vlieg A, Komanasin N, Ariëns RA , et al. Factor XIII Val34Leu polymorphism, factor XIII antigen levels and activity and the risk of deep venous thrombosis. Br J Haematol 2002; 119 (1) 169-175
  • 82 Vossen CY, Rosendaal FR. The protective effect of the factor XIII Val34Leu mutation on the risk of deep venous thrombosis is dependent on the fibrinogen level. J Thromb Haemost 2005; 3 (5) 1102-1103
  • 83 Boekholdt SM, Sandhu MS, Wareham NJ, Luben R, Reitsma PH, Khaw KT. Fibrinogen plasma levels modify the association between the factor XIII Val34Leu variant and risk of coronary artery disease: the EPIC-Norfolk prospective population study. J Thromb Haemost 2006; 4 (10) 2204-2209
  • 84 Bereczky Z, Balogh E, Katona E , et al. Modulation of the risk of coronary sclerosis/myocardial infarction by the interaction between factor XIII subunit A Val34Leu polymorphism and fibrinogen concentration in the high risk Hungarian population. Thromb Res 2007; 120 (4) 567-573
  • 85 Lim BC, Ariëns RA, Carter AM, Weisel JW, Grant PJ. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 2003; 361 (9367) 1424-1431
  • 86 Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev 2007; 21 (3) 131-142
  • 87 Pruissen DM, Slooter AJ, Rosendaal FR, van der Graaf Y, Algra A. Coagulation factor XIII gene variation, oral contraceptives, and risk of ischemic stroke. Blood 2008; 111 (3) 1282-1286
  • 88 Siegerink B, Maino A, Algra A, Rosendaal FR. Hypercoagulability and the risk of myocardial infarction and ischemic stroke in young women. J Thromb Haemost 2015; 13 (9) 1568-1575
  • 89 Landau MB, Renni MS, Zalis MG, Spector N, Gadelha T. Coagulation factor XIII Tyr204Phe gene variant and the risk of ischemic stroke. J Thromb Haemost 2013; 11 (7) 1426-1427
  • 90 Komanasin N, Catto AJ, Futers TS, van Hylckama Vlieg A, Rosendaal FR, Ariëns RA. A novel polymorphism in the factor XIII B-subunit (His95Arg): relationship to subunit dissociation and venous thrombosis. J Thromb Haemost 2005; 3 (11) 2487-2496
  • 91 Pourgheysari B, Drees F, Hashemzadeh-Chaleshtori M. Factor XIIIA-V34L and factor XIIIB-H95R in venous thromboembolism in central Iran: protective and neutral. Blood Coagul Fibrinolysis 2014; 25 (5) 439-443
  • 92 Mezei ZA, Bereczky Z, Katona É , et al. Factor XIII B subunit polymorphisms and the risk of coronary artery disease. Int J Mol Sci 2015; 16 (1) 1143-1159
  • 93 Iwata H, Kitano T, Umetsu K , et al. Distinct C-terminus of the B subunit of factor XIII in a population-associated major phenotype: the first case of complete allele-specific alternative splicing products in the coagulation and fibrinolytic systems. J Thromb Haemost 2009; 7 (7) 1084-1091
  • 94 Bereczky Z, Balogh E, Katona E, Czuriga I, Edes I, Muszbek L. Elevated factor XIII level and the risk of myocardial infarction in women. Haematologica 2007; 92 (2) 287-288
  • 95 Shemirani AH, Szomják E, Csiki Z, Katona E, Bereczky Z, Muszbek L. Elevated factor XIII level and the risk of peripheral artery disease. Haematologica 2008; 93 (9) 1430-1432
  • 96 Shemirani AH, Antalfi B, Pongrácz E, Mezei ZA, Bereczky Z, Csiki Z. Factor XIII-A subunit Val34Leu polymorphism in fatal atherothrombotic ischemic stroke. Blood Coagul Fibrinolysis 2014; 25 (4) 364-368
  • 97 Mansfield MW, Kohler HP, Ariëns RA, McCormack LJ, Grant PJ. Circulating levels of coagulation factor XIII in subjects with type 2 diabetes and in their first-degree relatives. Diabetes Care 2000; 23 (5) 703-705
  • 98 Gemmati D, Zeri G, Orioli E , et al. Factor XIII-A dynamics in acute myocardial infarction: a novel prognostic biomarker?. Thromb Haemost 2015; 114 (1) 123-132
  • 99 Nahrendorf M, Hu K, Frantz S , et al. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction. Circulation 2006; 113 (9) 1196-1202
  • 100 Nahrendorf M, Aikawa E, Figueiredo JL , et al. Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. Eur Heart J 2008; 29 (4) 445-454
  • 101 Leidy EM, Stern AM, Friedman PA, Bush LR. Enhanced thrombolysis by a factor XIIIa inhibitor in a rabbit model of femoral artery thrombosis. Thromb Res 1990; 59 (1) 15-26
  • 102 Shebuski RJ, Sitko GR, Claremon DA, Baldwin JJ, Remy DC, Stern AM. Inhibition of factor XIIIa in a canine model of coronary thrombosis: effect on reperfusion and acute reocclusion after recombinant tissue-type plasminogen activator. Blood 1990; 75 (7) 1455-1459
  • 103 Jaffer FA, Tung CH, Wykrzykowska JJ , et al. Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004; 110 (2) 170-176
  • 104 Gosk-Bierska I, McBane RD, Wu Y , et al. Platelet factor XIII gene expression and embolic propensity in atrial fibrillation. Thromb Haemost 2011; 106 (1) 75-82
  • 105 Ni H, Yuen PS, Papalia JM , et al. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci U S A 2003; 100 (5) 2415-2419
  • 106 Cho J, Mosher DF. Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood 2006; 108 (7) 2229-2236
  • 107 Wang Y, Reheman A, Spring CM , et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest 2014; 124 (10) 4281-4293
  • 108 Shaya SA, Saldanha LJ, Vaezzadeh N, Zhou J, Ni R, Gross PL. Comparison of the effect of dabigatran and dalteparin on thrombus stability in a murine model of venous thromboembolism. J Thromb Haemost 2016; 14 (1) 143-152
  • 109 Laki K, Lóránd L. On the solubility of fibrin clots. Science 1948; 108 (2802) 280
  • 110 Lord ST. Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol 2011; 31 (3) 494-499