Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(14): 1795-1800
DOI: 10.1055/s-0036-1588419
DOI: 10.1055/s-0036-1588419
letter
Metal-Free Mediated C-3 Methylsulfanylation of Imidazo[1,2-a]-pyridines with Dimethyl Sulfoxide as a Methylsulfanylating Agent
We thank the National Nature Science Foundation of China (Grant No. 21602202), the Science Foundation of Zhejiang Sci-Tech University (Grant Nos. 15062092-Y, 1206820-Y, and 1206821-Y), and the Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology of Zhejiang Sci-Tech University for their financial support.Further Information
Publication History
Received: 01 March 2017
Accepted after revision: 18 April 2017
Publication Date:
10 May 2017 (online)
Abstract
A simple approach is described for the regioselective C-3 methylsulfanylation of imidazo[1,2-a]pyridines through diiodine-mediated, acetone-promoted, C–S bond construction with dimethyl sulfoxide as both the source of the methylsulfanyl moiety and the solvent. Preliminary mechanistic investigations indicated that three different reaction mechanisms might be involved in the transformation.
Key words
methylsulfanylation - C–S bond formation - imidazopyridines - dimethyl sulfoxide - iodineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588419.
- Supporting Information
-
References
- 1a Kalgutkar AS. Kozak KR. Crews BC. Hochgesang GP. Jr. Marnett LJ. J. Med. Chem. 1998; 41: 4800
- 1b Laufer SA. Striegel H.-G. Wagner GK. J. Med. Chem. 2002; 45: 4695
- 1c Gallardo-Godoy A. Fierro A. McLean TH. Castillo M. Cassels BK. Reyes-Parada M. Nichols DE. J. Med. Chem. 2005; 48: 2407
- 1d Pradhan TK. De A. Mortier J. Tetrahedron 2005; 61: 9007
- 1e Laufer SA. Hauser DR. J. Domeyer DM. Kinkel K. Liedtke AJ. J. Med. Chem. 2008; 51: 4122
- 1f Laufer SA. Zimmermann W. Ruff KJ. J. Med. Chem. 2004; 47: 6311
- 1g Koch P. Bäuerlein C. Jank H. Laufer S. J. Med. Chem. 2008; 51: 5630
- 1h Kumar D. Narang R. Judge V. Kumar D. Narasimhan B. Med. Chem. Res. 2012; 21: 382
- 2a Peña-Cabrera E. Aguilar-Aguilar A. González-Domínguez M. Lager E. Zamudio-Vázquez R. Godoy-Vargas J. Villanueva-García F. Org. Lett. 2007; 9: 3985
- 2b Metzger A. Melzig L. Despotopoulou C. Knochel P. Org. Lett. 2009; 11: 4228
- 2c Melzig L. Metzger A. Knochel P. J. Org. Chem. 2010; 75: 2131
- 2d Melzig L. Metzger A. Knochel P. Chem. Eur. J. 2011; 17: 2948
- 3a Nicolaou KC. Koumbis AE. Snyder SA. Simonsen KB. Angew. Chem. Int. Ed. 2000; 39: 2529
- 3b Raju BR. Devi G. Nongpluh YS. Saikia AK. Synlett 2005; 358
- 3c Fort Y. Rodriguez AL. J. Org. Chem. 2003; 68: 4918
- 3d Johnson NW. Semones M. Adams JL. Hansbury M. Winkler J. Bioorg. Med. Chem. Lett. 2007; 17: 5514
- 3e Kondoh A. Yorimitsu H. Oshima K. Tetrahedron 2006; 62: 2357
- 3f Qiao Q. Dominique R. Sidduri A. Lou J. Goodnow RA. Jr. Synth. Commun. 2010; 40: 3691
- 4a Luo F. Pan C. Li L. Chen F. Cheng J. Chem. Commun. 2011; 47: 5304
- 4b Joseph PJ. A. Priyadarshini S. Kantam ML. Sreedhar B. Tetrahedron 2013; 69: 8276
- 4c Jones-Mensah E. Magolan J. Tetrahedron Lett. 2014; 55: 5323
- 5a Chu L. Yue X. Qing F.-L. Org. Lett. 2010; 12: 1644
- 5b Sharma P. Rohilla S. Jain N. J. Org. Chem. 2015; 80: 4116
- 5c Zhao W. Xie P. Bian Z. Zhou A. Ge H. Zhang M. Ding Y. Zheng L. J. Org. Chem. 2015; 80: 9167
- 5d Gao X. Pan X. Gao J. Jiang H. Yuan G. Li Y. Org. Lett. 2015; 17: 1038
- 5e Xu Y. Cong T. Liu P. Sun P. Org. Biomol. Chem. 2015; 13: 9742
- 5f Zou J.-F. Huang W.-S. Li L. Xu Z. Zheng Z.-J. Yang K.-F. Xu L.-W. RSC Adv. 2015; 5: 30389
- 6a Hamdouchi C. de Blas J. del Prado M. Gruber J. Heinz BA. Vance L. J. Med. Chem. 1999; 42: 50
- 6b Rupert KC. Henry JR. Dodd JH. Wadsworth SA. Cavender DE. Olini GC. Fahmy B. Siekierka JJ. Bioorg. Med. Chem. Lett. 2003; 13: 347
- 6c Gudmundsson KS. Williams JD. Drach JC. Townsend LB. J. Med. Chem. 2003; 46: 1449
- 6d Enguehard-Gueiffier C. Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
- 6e Hanson SM. Morlock EV. Satyshur KA. Czajkowski C. J. Med. Chem. 2008; 51: 7243
- 6f Gudmundsson KS. Boggs SD. Catalano JG. Svolto A. Spaltenstein A. Thomson M. Wheelan P. Jenkinson S. Bioorg. Med. Chem. Lett. 2009; 19: 6399
- 6g Moraski GC. Markley LD. Cramer J. Hipskind PA. Boshoff H. Bailey MA. Alling T. Ollinger J. Parish T. Miller MJ. ACS Med. Chem. Lett. 2013; 4: 675
- 7a Depoortere H. George P. US 5064836, 1991
- 7b Berson A. Descatoire V. Sutton A. Fau D. Maulny B. Vadrot N. Feldmann G. Berthon B. Tordjmann T. Pessayre D. J. Pharmacol. Exp. Ther. 2001; 299: 793
- 7c Sanger DJ. Behav. Pharmacol. 1995; 6: 116
- 7d Mizushige K. Ueda T. Yukiiri K. Suzuki H. Cardiovasc. Drug Rev. 2002; 20: 163
- 8a Cao H. Chen L. Liu J. Cai H. Deng H. Chen G. Yan C. Chen Y. RSC Adv. 2015; 5: 22356
- 8b Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
- 8c Ravi C. Mohan DC. Adimurthy S. Org. Lett. 2014; 16: 2978
- 8d Gao Z. Zhu X. Zhang R. RSC Adv. 2014; 4: 19891
- 8e Ge W. Zhu X. Wei Y. Eur. J. Org. Chem. 2013; 6015
- 8f Hiebel M.-A. Berteina-Raboin S. Green Chem. 2015; 17: 937
- 8g Bagdi AK. Mitra S. Ghosh M. Hajra A. Org. Biomol. Chem. 2015; 13: 3314
- 8h Huang X. Wang S. Li B. Wang X. Ge Z. Li R. RSC Adv. 2015; 5: 22654
- 8i Ding Y. Wu W. Zhao W. Li Y. Xie P. Huang Y. Liu Y. Zhou A. Org. Biomol. Chem. 2016; 14: 1428
- 8j Ji X.-M. Zhou S.-J. Chen F. Zhang X.-G. Tang R.-Y. Synthesis 2015; 47: 659
- 8k Siddaraju Y. Prabhu KR. J. Org. Chem. 2016; 81: 7838
- 9a Patil SM. Kulkarni S. Mascarenhas M. Sharma R. Roopan SM. Roychowdhury A. Tetrahedron 2013; 69: 8255
- 9b Liu S. Xi H. Zhang J. Wu X. Gao Q. Wu A. Org. Biomol. Chem. 2015; 13: 8807
- 10a Chen Z. Yan Q. Liu Z. Zhang Y. Chem. Eur. J. 2014; 20: 17635
- 10b Chen Z. Li H. Dong W. Miao M. Ren H. Org. Lett. 2016; 18: 1334
- 11 3-(Methylsulfanyl)-2-phenylimidazo[1,2-a]pyridine (2a); Typical Procedure I2 (152 mg, 0.6 mmol) and acetone (35 mg, 0.6 mmol) were added to a solution of substrate 1a (0.3 mmol) in DMSO (1 mL), and the mixture was stirred at 100 °C under air for 12 h. When the reaction was complete (TLC), the mixture was cooled to r.t., the reaction was quenched by H2O, and the mixture was extracted with EtOAc (3 × 15 mL). The extracts were washed with 10% aq Na2S2O3 (2 × 15 mL), dried (Na2SO4), and concentrated in vacuo. The resulting crude product was purified by column chromatography (silica gel, PE–EtOAc) to give a brown-yellow solid; yield: 53 mg (74%); mp 65–67 °C. 1H NMR (400 MHz, CDCl3): δ = 8.49 (d, J = 6.8 Hz, 1 H), 8.29 (m, 2 H), 7.68 (d, J = 9.2 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.39 (m, 1 H), 7.30 (m, 1 H), 6.94 (td, J1 = 6.8, J2 = 0.8 Hz, 1 H), 2.26 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 148.7, 146.3, 133.7, 128.4, 128.3, 128.2, 126.0, 124.2, 117.6, 112.7, 111.4, 18.1. HRMS (ES+–TOF): m/z [M + H]+ calcd for C14H13N2S: 241.0799; found: 241.0799.
- 12a An Z. She Y. Yang X. Pang X. Yan R. Org. Chem. Front. 2016; 3: 1746
- 12b Lu S. Zhu X. Li K. Guo Y.-J. Wang M.-D. Zhao X.-M. Hao X.-Q. Song M.-P. J. Org. Chem. 2016; 81: 8370
- 13a Gilman H. Eisch J. J. Am. Chem. Soc. 1955; 77: 3862
- 13b Traynelis VJ. Hergenrother WL. J. Org. Chem. 1964; 29: 221
- 13c Gao X. Pan X. Gao J. Huang H. Yuan G. Li Y. Chem. Commun. 2015; 51: 210
- 14 Gromada J. Matyjaszewski K. Macromolecules 2001; 34: 7664
- 15 Fava A. Reichenbach G. Peron U. J. Am. Chem. Soc. 1967; 89: 6696