Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(02): 252-259
DOI: 10.1055/s-0036-1588610
DOI: 10.1055/s-0036-1588610
feature
Electro-organic Synthesis as a Sustainable Alternative for Dehydrogenative Cross-Coupling of Phenols and Naphthols
Further Information
Publication History
Received: 30 July 2016
Accepted after revision: 07 September 2016
Publication Date:
18 October 2016 (online)
Dedicated to D. Enders on the occasion of his 70th birthday
Abstract
The dehydrogenative cross-coupling of phenols and naphthols can be achieved by several oxidative methods. However, the key is the use of fluorinated alcohols such as 1,1,1,3,3,3-hexafluoroisopropanol. The direct application of electricity represents an alternative synthetic approach, which is superior to other oxidizers (e.g., peroxides). The method is sustainable, inherently safe, and easily scalable.
Key words
cross-coupling - dehydrogenative coupling - phenols - naphthols - biphenols - electrolysis - anodic oxidationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588610.
- Supporting Information
-
References
- 1a Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 1b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 1c Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
- 2a Alexander JB, La DS, Cefalo DR, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 4041
- 2b Kiely AF, Jernelius JA, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2002; 124: 2868
- 3a Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Chem. Rev. 2009; 109: 897
- 3b Kirsch P, Bremer M. Angew. Chem. Int. Ed. 2000; 39: 4384
- 3c van Leeuwen PW. N. M, Kamer PD. J, Claver J, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
- 3d Su S.-J, Tanaka D, Li Y.-J, Sasabe H, Takeda T, Kido J. Org. Lett. 2008; 10: 941
- 4a Modern Arylation Methods . Ackermann L. Wiley-VCH; Weinheim: 2009
- 4b Handbook of C–H Transformations . Dyker G. Wiley-VCH; Weinheim: 2005
- 4c Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 5a Abdelwareth S, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
- 5b Libmann A, Shalit H, Vainer Y, Narute S, Kozuch S, Pappo D. J. Am. Chem. Soc. 2015; 137: 11453
- 6a Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
- 6b Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 7a Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 7b Mulrooney CA, Li X, DieVirgilio ES, Kozlowski MC. J. Am. Chem. Soc. 2003; 125: 6856
- 8 Wahl D. Galvanotechnik 2005; 96: 1600
- 9 Nagnath YM, Jeganmohan M. Org. Lett. 2015; 17: 3042
- 10a Morimoto K, Sakamoto K, Ohnishi Y, Miyamoto T, Ito M, Dohi T, Kita Y. Chem. Eur. J. 2013; 19: 8726
- 10b Dohi T, Ito M, Itani I, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Org. Lett. 2011; 13: 6208
- 11a Quell T, Beiser N, Dyballa KM, Franke R, Waldvogel SR. Eur. J. Org. Chem. 2016; 4307
- 11b Quell T, Mirion M, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. ChemistryOpen 2016; 5: 115
- 12 Grzyboski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
- 13a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 13b Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 13c Ackermann L. Top. Organomet. Chem. 2007; 24: 35
- 14a Kirste A, Hayashi S, Schnakenburg G, Malkowsky IM, Stecker F, Fischer A, Fuchigami T, Waldvogel SR. Chem. Eur. J. 2011; 17: 14164
- 14b Kirste A, Nieger M, Malkowsky IM, Stecker F, Fischer A, Waldvogel SR. Chem. Eur. J. 2009; 15: 2273
- 15 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
- 16 Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
- 17 Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
- 18 Elsler B, Schollmeyer B, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210
- 19a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 19b Steckhan E, Arns T, Heinemann WR, Hilt G, Hoormann D, Jörissen J, Kröner L, Lewall H, Pütter H. Chemosphere 2001; 43: 63
- 19c Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 20 Pütter H In Organic Electrochemistry . Vol. 4. Lund H, Hammerich O. Marcel Dekker; New York: 2001: 1259
- 21a Waldvogel SR. Pure Appl. Chem. 2010; 82: 1055
- 21b Malkowsky IM, Griesbach U, Pütter H, Waldvogel SR. Chem. Eur. J. 2006; 12: 7482
- 21c Morufuji T, Shimizu A, Yoshida J.-I. Angew. Chem. Int. Ed. 2012; 51: 7259
- 21d Yoshida J.-I, Nokami T, Suga S In Organic Electrochemistry . 5th ed.; Speiser B, Hammerich O. Taylor & Francis; Boca Raton: 2014
- 22a Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 10872
- 22b Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971
- 23 Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int Ed. 2016; 55: 11801
- 24 Kirste A, Schnakenburg G, Waldvogel SR. Org. Lett. 2011; 13: 3126
- 25a Waldvogel SR, Mentizi S, Kirste A. Top. Curr. Chem. 2012; 320: 1
- 25b Waldvogel SR, Elsler B. Electrochim. Acta 2012; 82: 434
- 26a Barjau J, Schnakenburg G, Waldvogel SR. Angew. Chem. Int. Ed. 2011; 50: 1415
- 26b Barjau J, Königs P, Kataeva O, Waldvogel SR. Synlett 2008; 2309
- 26c Malkowsky IM, Rommel CE, Wedeking K, Fröhlich R, Bergander K, Nieger M, Quaiser C, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Org. Chem. 2006; 241
- 27 Francke R, Cericola D, Weingarth D, Kötz R, Waldvogel SR. Electrochim. Acta 2012; 62: 372
- 28 Gütz C, Klöckner B, Waldvogel SR. Org. Process Res. Dev. 2016; 20: 26
- 29 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals . 7th ed. Elsevier; Oxford: 2013