Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(07): 1509-1518
DOI: 10.1055/s-0036-1588725
DOI: 10.1055/s-0036-1588725
feature
Amine Thiourea Catalysed Double Michael Reaction: An Approach for the Asymmetric Synthesis of Spiro[pyrazolone-4,3′-tetrahydrothiophenes]
Further Information
Publication History
Received: 28 December 2016
Accepted after revision: 27 January 2017
Publication Date:
21 February 2017 (online)
Dedicated to Professor Arrigo Scettri on the occasion of his 70th birthday
Abstract
A domino reaction, based on an organocatalysed sulfa-Michael/Michael sequence, is demonstrated as being useful for the asymmetric synthesis of spiro[pyrazolone-4,3′-tetrahydrothiophenes] bearing three consecutive stereocentres. This new class of spirocyclic compounds has been synthesised in good yield and fairly good diastereo- and enantioselectivity by reacting α,β-unsaturated pyrazolones and tert-butyl (E)-4-mercapto-2-butenoate in the presence of a readily available secondary amine thiourea derived from (R,R)-1,2-diphenylethylenediamine.
Key words
tetrahydrothiophenes - pyrazolones - spiro compounds - asymmetric synthesis - organocatalysisSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588725.
- Supporting Information
-
References
- 1a Lalit K, Chandresh T, Vivek S. Int. J. Res. Pharm. Sci. (Jaipur, India) 2012; 2 (2): 13
- 1b Hamama WS, El-Gohary HG, Kuhnert N, Zoorob HH. Curr. Org. Chem. 2012; 16: 373
- 1c Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
- 2 Tripathy R, Reiboldt A, Messina PA, Iqbal M. Bioorg. Med. Chem. Lett. 2006; 16: 2158
- 3 Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49
- 4 Schmidt B, Scheufler C, Volz J, Feth MP, Hummel R.-P, Hatzelmann A, Zitt C, Wohlsen A, Marx D, Kley H.-P, Ockert D, Heuser A, Christiaans JA. M, Sterk GJ, Menge WM. P. B (Nycomed GmbH, Germany) WO 2008138939, 2010
- 5a Maebashi M, Makino Y, Furukawa Y, Ohinata K, Kimura S, Sato T. J. Clin. Biochem. Nutr. 1993; 14: 211
- 5b Zempleni J, Wijeratne SS. K, Hassan YI. Biofactors 2009; 35: 36
- 6 Yoshimura Y, Watanabe M, Satoh H, Ashida N, Ijichi K, Sakata S, Machida H, Matsuda A. J. Med. Chem. 1997; 40: 2177
- 7 Johnson JW, Evanoff DP, Savard ME, Lange G, Ramadhar TR, Assoud A, Taylor NJ, Dmitrienko GI. J. Org. Chem. 2008; 73: 6970
- 8a Mukaiyama T, Asanuma H, Hachiya I, Harada T, Kobayashi S. Chem. Lett. 1991; 1209
- 8b Zanardi J, Lamazure D, Miniere S, Reboul V, Metzner P. J. Org. Chem. 2002; 67: 9083
- 9a Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
- 9b Benetti S, De Risi C, Pollini GP, Zanirato V. Chem. Rev. 2012; 112: 2129
- 9c Brandau S, Maerten E, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 14986
- 9d Yu C, Zhang Y, Song A, Ji Y, Wang W. Chem. Eur. J. 2011; 17: 770
- 9e Ling J.-B, Su Y, Zhu H.-L, Wang G.-Y, Xu P.-F. Org. Lett. 2012; 14: 1090
- 9f Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
- 9g Zhao B.-L, Liu L, Du D.-M. Eur. J. Org. Chem. 2014; 7850
- 9h Liang J.-J, Pan J.-Y, Xu D.-C, Xie J.-W. Tetrahedron Lett. 2014; 55: 6335
- 9i Mahajan S, Chauhan P, Blümel M, Puttreddy R, Rissanen K, Raabe G, Enders D. Synthesis 2016; 48: 1131
- 10a Tietze LF, Rackelmann N. Pure Appl. Chem. 2004; 76: 1967
- 10b Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
- 10c Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
- 10d Ruiz M, Lopez-Alvarado P, Giorgi G, Menéndez JC. Chem. Soc. Rev. 2011; 40: 3445
- 10e Albrecht L, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
- 10f Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 10g Goudedranche S, Raimondi W, Bugaut X, Constantieux T, Bonne D, Rodriguez J. Synthesis 2013; 45: 1909
- 10h Pellissier H. Chem. Rev. 2013; 113: 442
- 10i Volla MR, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 12 For a recent review, see: Wender PA. Tetrahedron 2013; 69: 7529
- 13a Clarke PA, Santos S, Martin WH. C. Green Chem. 2007; 9: 438
- 13b Hayashi Y. Chem. Sci. 2016; 7: 866
- 14a Chauhan P, Mahajan S, Enders D. Chem. Commun. 2015; 51: 12890
- 14b Gogoi S, Zhao C.-G. Tetrahedron Lett. 2009; 50: 2252
- 14c Liu L, Zhong Y, Zhang P, Jiang X, Wang R. J. Org. Chem. 2012; 77: 10228
- 14d Enders D, Grossmann A, Gieraths B, Düzdemir M, Merkens C. Org. Lett. 2012; 14: 4254
- 14e Zhang J.-X, Li N.-K, Liu Z.-M, Huang X.-F, Geng Z.-C, Wang X.-W. Adv. Synth. Catal. 2013; 355: 797
- 14f Han X, Yao W, Wang T, Tan YR, Yan Z, Kwiatkowski J, Lu Y. Angew. Chem. Int. Ed. 2014; 53: 5643
- 14g Han B, Huang W, Ren W, He G, Wang J.-H, Peng C. Adv. Synth. Catal. 2015; 357: 561
- 14h Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur. J. Org. Chem. 2015; 2030
- 14i Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju A. Angew. Chem. Int. Ed. 2016; 55: 268
- 15a Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
- 15b D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
- 16a Companyó X, Zea A, Alba A.-NR, Mazzanti A, Moyano A, Rios R. Chem. Commun. 2010; 46: 6953
- 16b Alba A.-NR, Zea A, Valero G, Calbet T, Font-Bardía M, Mazzanti A, Moyano A, Rios R. Eur. J. Org. Chem. 2011; 1318
- 17 Hack D, Dürr B, Deckers K, Chauhan P, Seling N, Rübenach L, Mertens L, Raabe G, Schoenebeck F, Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
- 18 Huang Y, Zheng C, Chai Z, Zhao G. Adv. Synth. Catal. 2014; 356: 579
- 19 Kaya U, Mahajan S, Schöbel J.-H, Valkonen A, Rissanen K, Enders D. Synthesis 2016; 48: 4091
- 20 Meninno S, Croce G, Lattanzi A. Org. Lett. 2013; 15: 3436
- 21 Taking into account the facile oxidation of thiols to disulfides, an excess of the (E)-4-mercapto-2-butenoate (2 equiv) with respect to the alkene was added to facilitate completion of the reaction (see the experimental section).
- 22 CCDC 1521705 (9d) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 23 Catalyst VII was also found to be the most effective, among others, in promoting an asymmetric domino sulfa-Michael/nitro-aldol reaction to give tetrahydrothiophenes bearing a quaternary stereocentre; see: Meninno S, Volpe C, Della Sala G, Capobianco A, Lattanzi A. Beilstein J. Org. Chem. 2016; 12: 643
- 24 Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
- 25a Miyaji R, Asano K, Matsubara S. Org. Lett. 2013; 15: 3658
- 25b Amere M, Lasne M.-C, Rouden J. Org. Lett. 2007; 9: 2621
- 25c Wu W, Min L, Zhu L, Lee C.-S. Adv. Synth. Catal. 2011; 353: 1135
- 26 Yang W, Du D.-M. Org. Lett. 2010; 12: 5450
- 27 Chen Q, Liang J, Wang S, Wang D, Wang R. Chem. Commun. 2013; 49: 1657
- 28 Bunce RA, Pierce JD. Tetrahedron Lett. 1986; 27: 5583
For reviews, see:
For selected examples, see:
For reviews, see:
For selected examples, see:
For selected reviews, see:
For a recent review on the asymmetric synthesis of spiropyrazolones, see:
For selected examples, see:
For reviews on synthetic approaches for the formation of spirocyclic centres, see: