Subscribe to RSS
DOI: 10.1055/s-0036-1588987
Oxidative Cyclization of β,γ-Unsaturated Carboxylic Acids Using Hypervalent Iodine Reagents: An Efficient Synthesis of 4-Substituted Furan-2-ones
Publication History
Received: 16 February 2017
Accepted after revision: 09 March 2017
Publication Date:
30 March 2017 (online)
Published as part of the Special Topic Modern Strategies with Iodine in Synthesis�
Abstract
The oxidative cyclization of β-substituted β,γ-unsaturated carboxylic acids using a hypervalent iodine reagent to provide 4-substituted furan-2-one products, is reported. In this cyclization, the use of a highly electrophilic PhI(OTf)2, which is in situ prepared from PhI(OAc)2 and Me3SiOTf, is crucial. Depending on the substitution pattern at the α-position of the substrates, furan-2(5H)-ones or furan-2(3H)-ones are produced. Thus, the present method offers a useful tool for accessing various types of 4-substituted furan-2-ones that are important structural motifs in the field of organic chemistry and medicinal chemistry.
Key words
hypervalent iodine - oxidation - cyclization - β,γ-unsaturated carboxylic acids - furanonesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588987.
- Supporting Information
-
References
- 1a Kupchan SM. Court WA. Dailey RG. Jr. Gilmore CJ. Bryan RF. J. Am. Chem. Soc. 1972; 94: 7194
- 1b Pelter A. Ward RS. Rao EV. Raju NR. J. Chem. Soc., Perkin Trans. 1 1981; 2491
- 1c De Guzman FS. Schmitz FJ. J. Nat. Prod. 1990; 53: 926
- 1d Bezuidenhoudt BC. B. Swanepoel A. Brandt EV. Ferreira D. J. Chem. Soc., Perkin Trans. 1 1990; 2599
- 1e Miao S. Andersen RJ. J. Org. Chem. 1991; 56: 6275
- 1f Miles DH. Chittawong V. Lho D.-S. Payne AM. de la Cruz AA. Gomez ED. Weeks JA. Atwood JL. J. Nat. Prod. 1991; 54: 286
- 1g Nohara T. Kinjo J. Furusawa J. Sakai Y. Inoue M. Shirataki Y. Ishibashi Y. Yokoe I. Komatsu M. Phytochemistry 1993; 33: 1207
- 1h Cerri A. Mauri P. Mauro M. Melloni P. J. Heterocycl. Chem. 1993; 30: 1581
- 1i Evidente A. Sparapano L. J. Nat. Prod. 1994; 57: 1720
- 1j Figadère B. Acc. Chem. Res. 1995; 28: 359
- 1k Midland SL. Keen NT. Sims JJ. J. Org. Chem. 1995; 60: 1118
- 1l Honda T. Mizutani H. Kanai K. J. Org. Chem. 1996; 61: 9374
- 1m Gunasekera SP. McCarthy PJ. Kelly-Borges M. Lobkovsky E. Clardy J. J. Am. Chem. Soc. 1996; 118: 8759
- 1n Smith CJ. Hettich RL. Jompa J. Tahir A. Buchanan MV. Ireland CM. J. Org. Chem. 1998; 63: 4147
- 1o Ortega MJ. Zubía E. Ocaña JM. Naranjo S. Salvá J. Tetrahedron 2000; 56: 3963
- 1p Bellina F. Anselmi C. Viel S. Mannina L. Rossi R. Tetrahedron 2001; 57: 9997
- 1q Ueda J. Tezuka Y. Banskota AH. Tran QL. Tran QK. Saiki I. Kadota S. J. Nat. Prod. 2003; 66: 1427
- 1r Braña MF. García ML. López B. de Pascual-Teresa B. Ramos A. Pozuelo JM. Domínguez MT. Org. Biomol. Chem. 2004; 2: 1864
- 1s Keyzers RA. Davies-Coleman MT. Chem. Soc. Rev. 2005; 34: 355
- 1t Ohsaki A. Kobayashi Y. Yoneda K. Kishida A. Ishiyama H. J. Nat. Prod. 2007; 70: 2003
- 1u Zhang H. Conte MM. Huang X.-C. Khalil Z. Capon RJ. Org. Biomol. Chem. 2012; 10: 2656
- 2a Rao YS. Chem. Rev. 1976; 76: 625
- 2b Avetisyan AA. Dangyan MT. Russ. Chem. Rev. 1977; 46: 643
- 2c Wu J. Zhu Q. Wang L. Fathi R. Yang Z. J. Org. Chem. 2003; 68: 670
- 2d Boukouvalas J. Loach RP. J. Org. Chem. 2008; 73: 8109
- 2e Hyde AM. Buchwald SL. Org. Lett. 2009; 11: 2663
- 2f Matsuo K. Shindo M. Org. Lett. 2010; 12: 5346
- 2g Lee D. Newman SG. Taylor MS. Org. Lett. 2009; 11: 5486
- 2h Cheng J. Chen P. Liu G. Org. Chem. Front. 2014; 1: 289
- 2i Mao W. Zhu C. Org. Lett. 2015; 17: 5710
- 3a Danieli N. Mazur Y. Sondheimer F. J. Am. Chem. Soc. 1962; 84: 875
- 3b Danieli N. Mazur Y. Sondheimer F. Tetrahedron 1966; 22: 3189
- 3c Krauser SF. Watterson AC. Jr. J. Org. Chem. 1978; 43: 3400
- 3d Kagabu S. Shimizu Y. Ito C. Moriya K. Synthesis 1992; 830
- 3e Renard M. Ghosez LA. Tetrahedron 2001; 57: 2597
- 3f Bassetti M. D’Annibale A. Fanfoni A. Minissi F. Org. Lett. 2005; 7: 1805
- 3g Liu Y. Song F. Guo S. J. Am. Chem. Soc. 2006; 128: 11332
- 3h Tejedor D. Santos-Expośito A. García-Tellado F. Synlett 2006; 1607
- 3i Alfonsi M. Arcadi A. Chiarini M. Marinelli F. J. Org. Chem. 2007; 72: 9510
- 3j Li S. Miao B. Yuan W. Ma S. Org. Lett. 2013; 15: 977
- 4a Kasahara A. Izumi T. Sato K. Maemura M. Hayasaka T. Bull. Chem. Soc. Jpn. 1977; 50: 1899
- 4b Browne DM. Niyomura O. Wirth T. Org. Lett. 2007; 9: 3169
- 4c Bajracharya GB. Koranne PS. Nadaf RN. Gabr RK. M. Takenaka K. Takizawa S. Sasai H. Chem. Commun. 2010; 46: 9064
- 4d Kawamata Y. Hashimoto T. Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206
- 5 Singh FV. Rehbein J. Wirth T. ChemistryOpen 2012; 1: 245
- 6a Kiyokawa K. Yahata S. Kojima T. Minakata S. Org. Lett. 2014; 16: 4646
- 6b Kiyokawa K. Kojima T. Hishikawa Y. Minakata S. Chem. Eur. J. 2015; 21: 15548
- 7a Zefirov NS. Safronov SO. Kaznacheev AA. Zhdankin VV. Zh. Org. Khim. 1989; 25: 1807
- 7b Lutz KE. Thomson RJ. Angew. Chem. Int. Ed. 2011; 50: 4437
- 7c Farid U. Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
- 8a Zefirov NS. Zhdankin VV. Dan’kov YV. Koz’min AS. J. Org. Chem. USSR 1984; 20: 401 ; Zh. Org. Khim. 1984, 20, 446
- 8b Zefirov NS. Zhdankin VV. Dan’kov YV. Sorokin VD. Semerikov VN. Koz’min AS. Caple R. Berglund BA. Tetrahedron Lett. 1986; 27: 3971
- 9 Upon treatment with TfOH in CH2Cl2, methoxy-substituted substrate 1g completely isomerized into the corresponding α,β-unsaturated carboxylic acid, which decomposed into a complex mixture under the standard cyclization conditions.
- 10 Izquierdo S. Essafi S. del Rosal I. Vidossich P. Pleixats R. Vallribera A. Ujaque G. Lledós A. Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
- 11 Gronnier C. Kramer S. Odabachian Y. Gagosz F. J. Am. Chem. Soc. 2012; 134: 828
- 12 Hu Y. Ding Q. Ye S. Peng Y. Wu J. Tetrahedron 2011; 67: 7258
- 13 Carter NB. Mabon R. Richecœur AM. E. Sweeney JB. Tetrahedron 2002; 58: 9117
- 14 Pelletier SW. Djarmati Z. Lajšić SD. Mićović IV. Yang DT. C. Tetrahedron 1975; 31: 1659
For reviews, see:
For selected examples, see:
For selected examples, see:
For iodine-catalyzed decarboxylative amidation, see: