Subscribe to RSS
DOI: 10.1055/s-0036-1590896
One-Pot Catalyst-Free Domino Condensation/Intramolecular 1,3-Dipolar Cycloaddition: Highly Stereoselective Access to Phosphadihydrocoumarin-Fused N,N-Bicyclic Pyrazolidin-3-ones
Publication History
Received: 02 July 2017
Accepted after revision: 07 August 2017
Publication Date:
06 September 2017 (online)
Abstract
A concise, atom-economic, and highly regio/stereoselective synthetic strategy was developed for the construction of phosphorus- and nitrogen-fused polycyclic skeleton derivatives. The one-pot, two-step, catalyst-free domino condensation/intramolecular cycloaddition reaction of various substituted 2-(vinylphosphoryloxy)benzaldehydes with pyrazolidin-3-one took place at room temperature. Three new bonds (C–C, 2 × C–N) and two new nitrogen and phosphorus heterocycles were simultaneously constructed. The reaction is particularly attractive due to features such as low cost, mild conditions, atom economy, high stereoselectivity, and potential biological activity of the product.
Key words
catalyst-free - stereoselectivity - nitrogen and phosphorus heterocycles - polycycles - intramolecular cycloadditionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590896.
- Supporting Information
- CIF File
-
References
- 1a Pinheiro Ed. S. Antunes OA. C. Fortunak JM. D. Antiviral Res. 2008; 79: 143
- 1b Atherton FR. Hall MJ. Hassall CH. Holmes SW. Lambert RW. Lloyd WJ. Ringrose PS. Antimicrob. Agents Chemother. 1980; 18: 897
- 1c Atherton FR. Hassall CH. Lambert RW. J. Med. Chem. 1986; 29: 29
- 1d Cherenok S. Yushchenko O. Tanchuk V. Mischenko I. Samus N. Arkivoc 2012; (iv): 278
- 1e Albrecht L. Albrecht A. Krawczyk H. Jørgensen KA. Chem. Eur. J. 2010; 16: 28
- 1f Uludag H. Kousinioris N. Gao T. Kantoci D. Biotechnol. Prog. 2000; 16: 258
- 2a Chan T.-H. Xin Y.-C. von Itzstein M. J. Org. Chem. 1997; 62: 3500
- 2b Dayde B. Pierra C. Gosselin G. Surleraux D. Ilagouma AT. Laborde C. Volle J.-N. Virieux D. Pirat J.-L. Eur. J. Org. Chem. 2014; 1333
- 2c Ebetino FH. Soper DL. Dirr MJ. Lundy MW. Mieling G. Wos JA. deLong MA. Liu X. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 1725
- 2d Stoianova DS. Whitehead A. Hanson PR. J. Org. Chem. 2005; 70: 5880
- 2e Kim C.-E. Ryu T. Kim S. Lee K. Lee C.-H. Lee PH. Adv. Synth. Catal. 2013; 355: 2873
- 2f Maury C. Gharbaoui T. Royer J. Husson H.-P. J. Org. Chem. 1996; 61: 3687
- 2g Stoianova DS. Hanson PR. Org. Lett. 2001; 3: 3285
- 3a Kim C.-E. Son J.-Y. Shin S. Seo B. Lee PH. Org. Lett. 2015; 17: 908
- 3b Li X. Wang Y. Fu H. Jiang Y. Zhao Y. Bioorg. Chem. 2006; 34: 105
- 3c Li X. Zhang D. Pang H. Shen F. Fu H. Jiang Y. Zhao Y. Org. Lett. 2005; 7: 4919
- 3d Sadykova YM. Sadikova LM. Badrtdinova AR. Dobrynin AB. Burilov AR. Pudovik MA. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 2267
- 3e Petkova NI. Nikolova RD. Bojilova AG. Rodios NA. Kopf J. Tetrahedron 2009; 65: 1639
- 4 Bedalov A. Gatbonton T. Irvine WP. Gottschling DE. Simon JA. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 15113
- 5a Drabikova KP. T. Nosal R. Rackova L. Ambrozova G. Lojek AS. J. Harmatha J. Jancinova V. Neuroendocrinol. Lett. 2010; 31: 73
- 5b Hirao M. Posakony J. Nelson M. Hruby H. Jung M. Simon JA. Bedalov A. J. Biol. Chem. 2003; 278: 52773
- 6a Kosower E. Radkowsky A. Fairlamb A. Croft S. Neal R. Eur. J. Med. Chem. 1995; 30: 659
- 6b Boatman PD. Ogbu CO. Eguchi M. Kim H.-O. Nakanishi H. Cao B. Shea JP. Kahn M. J. Med. Chem. 1999; 42: 1367
- 6c Gardiner J. Abell AD. Tetrahedron Lett. 2003; 44: 4227
- 6d Liu B. Brandt JD. Moeller KD. Tetrahedron 2003; 59: 8515
- 7a Liang L. Huang Y. Org. Lett. 2016; 18: 2604
- 7b Yang Z.-W. Wang J.-F. Peng L.-J. You X.-L. Cui H.-L. Tetrahedron Lett. 2016; 57: 5219
- 8a Chen W. Yuan XH. Li R. Du W. Wu Y. Ding LS. Chen YC. Adv. Synth. Catal. 2006; 348: 1818
- 8b Chen W. Du W. Duan YZ. Wu Y. Yang SY. Chen YC. Angew. Chem. Int. Ed. 2007; 119: 7811
- 8c Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768
- 8d Wang X. Yang P. Zhang Y. Tang CZ. Tian F. Peng L. Wang LX. Org. Lett. 2017; 19: 646
- 8e Xin Y. Zhao J. Gu J. Zhu S. J. Fluorine Chem. 2011; 132: 402
- 9a Na R. Jing C. Xu Q. Jiang H. Wu X. Shi J. Zhong J. Wang M. Benitez D. Tkatchouk E. Goddard WA. Guo H. Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
- 9b Na R. Liu H. Li Z. Wang B. Liu J. Wang M.-A. Wang M. Zhong J. Guo H. Tetrahedron 2012; 68: 2349
- 10a Shao C. Zhang Q. Cheng G. Cheng C. Wang X. Hu Y. Eur. J. Org. Chem. 2013; 6443
- 10b Shintani R. Fu GC. J. Am. Chem. Soc. 2003; 125: 10778
- 10c Shintani R. Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
- 10d Yoshimura K. Oishi T. Yamaguchi K. Mizuno N. Chem. Eur. J. 2011; 17: 3827
- 11 Fang X. Li J. Tao H.-Y. Wang C.-J. Org. Lett. 2013; 15: 5554
- 12 Liu W. Xu Y. Sun X. Lu D. Guo L. Synlett 2014; 25: 1093
- 13a Coldham I. Hufton R. Chem. Rev. 2005; 105: 2765
- 13b Hashimoto T. Maruoka K. Chem. Rev. 2015; 115: 5366
- 13c Padwa A. Angew. Chem., Int. Ed. Engl. 1976; 15: 123
- 14a Jiang J. Wu M. Zhu Z. Kong D. Synthesis 2017; 49: 3731
- 14b Li G. Wu M. Kong D. Liu R. Zhou X. Liu F. New J. Chem. 2014; 38: 3350
- 14c Li G. Wu M. Liu F. Jiang J. Synthesis 2015; 47: 3783
- 15a Du J. Xu X. Li Y. Pan L. Liu Q. Org. Lett. 2014; 16: 4004
- 15b Tong MC. Chen X. Tao HY. Wang CJ. Angew. Chem. Int. Ed. 2013; 52: 12377
- 15c Zhao H.-W. Li B. Pang H.-L. Tian T. Chen X.-Q. Song X.-Q. Meng W. Yang Z. Zhao Y.-D. Liu Y.-Y. Org. Lett. 2016; 18: 848
- 15d Najera C. Sansano JM. Curr. Org. Chem. 2003; 7: 1105
- 15e Sansano LM. Sibi MP. Chem. Rev. 2008; 108: 2887
- 16 CCDC 1549590 (5b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 17 Furegati S. Binder M. Linden A. Rüedi P. Helv. Chim. Acta 2006; 89: 1351