Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(07): 969-973
DOI: 10.1055/s-0036-1591904
DOI: 10.1055/s-0036-1591904
letter
Palladium-Catalyzed Oxidation of Indoles to Isatins by tert-Butyl Hydroperoxide
This research is sponsored by the research funds of Ningbo University (No. ZX2016000748) and by the K. C. Wong Magna Fund of Ningbo University.Further Information
Publication History
Received: 30 November 2017
Accepted after revision: 02 January 2018
Publication Date:
31 January 2018 (online)
Abstract
The combination of a Pd catalyst and tert-butyl hydroperoxide (TBHP) is a powerful catalytic system for many types of oxidative transformations. Here, we report that a Pd/TBHP system facilitates the oxidation of indoles with a range of functionalities to give the corresponding isatin derivatives in good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591904.
- Supporting Information
-
References and Notes
- 1a Grushin VV. Organometallics 2001; 20: 3950
- 1b Lee JM. Ahn D.-S. Jung DY. Lee J. Do Y. Kim SK. Chang S. J. Am. Chem. Soc. 2006; 128: 12954
- 1c Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
- 1d Krishnan S. Bagdanoff JT. Ebner D. Ramtohul YK. Tambar UK. Stoltz BM. J. Am. Chem. Soc. 2008; 130: 13745
- 1e Muzart J. J. Mol. Catal. A: Chem. 2011; 338: 7
- 1f Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
- 2a Bjørsvik H.-R. Liguori L. Minisci F. Org. Process Res. Dev. 2000; 4: 534
- 2b Curci R. D’Accolti L. Fusco C. Acc. Chem. Res. 2006; 39: 1
- 2c Hirai Y. Kojima T. Mizutani Y. Shiota Y. Yoshizawa K. Fukuzumi S. Angew. Chem. Int. Ed. 2008; 47: 5772
- 3a Smidt J. Hafner W. Jira R. Sieber R. Sedlmeier S. Sabel A. Angew. Chem. Int. Ed. Engl. 1962; 1: 80
- 3b Clement WH. Selwitz CM. J. Org. Chem. 1964; 29: 241
- 3c Tsuji J. Synthesis 1984; 369
- 3d Tsuji J. In Comprehensive Organic Synthesis . vol. 7, Chap. 3.4. Trost BM. Fleming I. Pergamon; Oxford: 1991: 449
- 4a Cornell CN. Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
- 4b Michel BW. Camelio AM. Cornell CN. Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
- 4c Michel BW. McCombs JR. Winkler A. Sigman MS. Angew. Chem. Int. Ed. 2010; 49: 7312
- 4d Michel BW. Steffens LD. Sigman MS. J. Am. Chem. Soc. 2011; 133: 8317
- 4e McCombs JR. Michel BW. Sigman MS. J. Org. Chem. 2011; 76: 3609
- 4f DeLuca RJ. Edwards JL. Steffens LD. Michel BW. Qiao X. Zhu C. Cook SP. Sigman MS. J. Org. Chem. 2013; 78: 1682
- 5 Zhao J.-W. Liu L. Xiang SJ. Liu Q. Chen H.-J. Org. Biomol. Chem. 2015; 13: 5613
- 6 Dong J. Liu P. Sun P. J. Org. Chem. 2015; 80: 2925
- 7 Wu X.-F. Chem. Eur. J. 2015; 21: 12252
- 8a Jia X. Zhang S. Wang W. Luo F. Cheng J. Org. Lett. 2009; 11: 3120
- 8b Chan C.-W. Zhou Z. Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999
- 8c Wu Y. Li B. Mao F. Li X. Kwong FY. Org. Lett. 2011; 13: 3258
- 8d Li C. Wang L. Li P. Zhou W. Chem. Eur. J. 2011; 17: 10208
- 8e Shin Y. Sharma S. Mishra NK. Han S. Park J. Oh H. Ha J. Yoo H. Jung YH. Kim IS. Adv. Synth. Catal. 2015; 357: 594
- 8f Szabo F. Daru J. Simkó D. Nagy TZ. Stirling A. Novak Z. Adv. Synth. Catal. 2013; 355: 685
- 8g Szabo F. Simkó D. Novak Z. RSC Adv. 2014; 4: 3883
- 8h Zhang Q. Li C. Yang F. Li J. Wu Y. Tetrahedron 2013; 69: 320
- 8i Banerjee A. Santra SK. Guin S. Rout SK. Patel BK. Eur. J. Org. Chem. 2013; 1367
- 8j Sharma S. Park J. Park E. Kim A. Kim M. Kwak JH. Jung YH. Kim IS. Adv. Synth. Catal. 2013; 355: 332
- 8k Banerjee A. Bera A. Santra SK. Guin S. Patel BK. RSC Adv. 2014; 4: 8558
- 8l Sun M. Hou L.-K. Chen X.-X. Yang X.-J. Sun W. Zang Y.-S. Adv. Synth. Catal. 2014; 356: 3789
- 8m Yi M. Cui X. Zhu C. Pi C. Zhu W. Wu Y. Asian J. Org. Chem. 2015; 4: 38
- 8n Li H. Li P. Wang L. Org. Lett. 2013; 15: 620
- 8o Chan C.-W. Zhou Z. Chan AS. C. Yu W.-Y. Org. Lett. 2010; 12: 3926
- 8p Kianmehr E. Kazemi S. Foroumadi A. Tetrahedron 2014; 70: 349
- 8q Yan X.-B. Shen Y.-W. Chen D.-Q. Gao P. Li Y.-X. Song X.-R. Liu X.-Y. Liang Y.-M. Tetrahedron 2014; 70: 7490
- 8r Kumar G. Sekar G. RSC Adv. 2015; 5: 28292
- 8s Wang W. Liu J. Gui Q. Tan Z. Synlett 2015; 26: 931
- 8t Zhao J. Fang H. Xie C. Han J. Pan G. Li Y. Asian J. Org. Chem. 2013; 2: 1044
- 8u Chu J.-H. Chen S.-T. Chiang M.-F. Wu M.-J. Organometallics 2015; 34: 953
- 8v Yu Q. Zhang N. Huang J. Lu S. Zhu Y. Yu X. Zhao K. Chem. Eur. J. 2013; 19: 11184
- 8w Zhang N. Yu Q. Chen R. Huang J. Xia Y. Zhao K. Chem. Commun. 2013; 49: 9464
- 8x Duan P. Yang Y. Ben R. Yan Y. Dai L. Hong M. Wu Y.-D. Wang D. Zhang X. Zhao J. Chem. Sci. 2014; 5: 1574
- 9a Xiao F. Shuai Q. Zhao F. Basle O. Deng G. Li C.-J. Org. Lett. 2011; 13: 1614
- 9b Kishore R. Kantam ML. Yadav J. Sudhakar M. Laha S. Venugopal A. J. Mol. Catal. A: Chem. 2013; 379: 213
- 9c Yuan Y. Chen D. Wang X. Adv. Synth. Catal. 2011; 353: 3373
- 9d Luo F. Yang J. Li Z. Xiang H. Zhou X. Eur. J. Org. Chem. 2015; 2463
- 9e Zhang Q. Yang F. Wu Y. Tetrahedron 2013; 69: 4908
- 9f Ding Q. Ji H. Ye C. Wang J. Wang J. Zhou L. Peng Y. Tetrahedron 2013; 69: 8661
- 9g Park J. Kim A. Sharma S. Kim M. Park E. Jeon Y. Lee Y. Kwak JH. Jung YH. Kim IS. Org. Biomol. Chem. 2013; 11: 2766
- 9h Kim M. Sharma S. Park J. Kim M. Choi Y. Jeon Y. Kwak JH. Kim IS. Tetrahedron 2013; 69: 6552
- 9i Sharma S. Kim M. Park J. Kim M. Kwak JH. Jung YH. Oh JS. Lee Y. Kim IS. Eur. J. Org. Chem. 2013; 6656
- 9j Hou L. Chen X. Li S. Cai S. Zhao Y. Sun M. Yang XJ. Org. Biomol. Chem. 2015; 13: 4160
- 9k Tang H. Qian C. Lin D. Jiang H. Zeng W. Adv. Synth. Catal. 2014; 356: 519
- 10a Guin S. Rout SK. Banerjee A. Nandi S. Patel BK. Org. Lett. 2012; 14: 5294
- 10b Zheng Y. Song WB. Zhang SW. Xuan LJ. Tetrahedron 2015; 71: 1574
- 10c Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
- 10d Wu Y. Choy PY. Mao F. Kwong FY. Chem. Commun. 2013; 49: 689
- 10e Weng J. Yu Z. Liu X. Zhang G. Tetrahedron Lett. 2013; 54: 1205
- 10f Xiong F. Qian C. Lin D. Zeng W. Lu X. Org. Lett. 2013; 15: 5444
- 10g Song H. Chen D. Pi C. Cui X. Wu Y. J. Org. Chem. 2014; 79: 2955
- 10h Wu Y. Feng L.-J. Lu X. Kwong FY. Luo H.-B. Chem. Commun. 2014; 50: 15352
- 11a Zhou W. Li H. Wang L. Org. Lett. 2012; 14: 4594
- 11b Cui C. Pi X. Liu X. Guo M. Zhang H. Wu Y. Org. Lett. 2014; 16: 5164
- 11c Li C. Zhu W. Shu S. Wu X. Liu H. Eur. J. Org. Chem. 2015; 3743
- 12a Khemnar AB. Bhanage BM. Eur. J. Org. Chem. 2014; 6746
- 12b Khatun N. Banerjee A. Santra SK. Behera A. Patel BK. RSC Adv. 2014; 4: 54532
- 13 Han S. Sharma S. Park J. Kim M. Shin Y. Mishra NK. Bae JJ. Kwak JH. Jung YH. Kim IS. J. Org. Chem. 2014; 79: 275
- 14 Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
- 15a Millemaggi A. Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
- 15b Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
- 15c Pakravan P. Kashanian S. Khodaei MM. Harding FJ. Pharmacol. Rep. 2013; 65: 313
- 16a Zi Y. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 3094
- 16b Lollar CT. Krenek KM. Bruemmer KJ. Lippert AR. Org. Biomol. Chem. 2014; 12: 406
- 16c Li W. Duan Z. Zhang X. Zhang H. Wang M. Jiang R. Zeng H. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 1893
- 16d Satish G. Polu A. Ramar T. Ilangovan A. J. Org. Chem. 2015; 80: 5167
- 16e Bredenkamp A. Mohr F. Kirsch SF. Synthesis 2015; 47: 1937
- 16f Liu P. Guo J. Wei W. Liu X. Sun P. Eur. J. Org. Chem. 2016; 2105
- 16g Luo J. Zhao Y. Xu X. Zheng J. Liang H. Tetrahedron Lett. 2017; 58: 4591
- 16h Wang C.-P. Jiang G.-F. Tetrahedron Lett. 2017; 58: 1747
- 16i Chen S. Liu Z. Shi E. Chen L. Wei W. Li H. Cheng Y. Wan X. Org. Lett. 2011; 13: 2274
- 17 1-Methyl-1H-indoline-2,3-dione (N-methylisatin, 2a); Typical Procedure A vial was charged with Pd(OAc)2 (0.05 mmol), N-methylindole 1a (0.5 mmol), 70% aq TBHP (1 mL), and MeCN (3.0 mL), and the mixture was stirred at 80 °C for 1 h. The reaction was then quenched with sat. aq Na2SO3 to remove residual TBHP, and the mixture was extracted with EtOAc (3×10 mL). The organic layer was separated, dried (Na2SO4), and concentrated. Flash column chromatographic purification [silica gel, EtOAc–PE, 5:1] gave a red solid; yield: 67 mg (83%). 1H NMR (400 MHz, CDCl3): δ = 7.60–7.53 (m, 2 H), 7.11 (t, J = 7.4 Hz, 1 H), 6.88 (d, J = 7.8 Hz, 1 H), 3.22 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 183.3, 158.1, 151.3, 138.4, 125.1, 123.7, 117.3, 109.9, 26.1.