Semin Liver Dis 2017; 37(01): 001-010
DOI: 10.1055/s-0036-1597816
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Regression of Liver Fibrosis

Lara Campana
1   Centre for Inflammation Research and Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
2   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
John P. Iredale
3   Senate House, University of Bristol, Bristol, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
15 February 2017 (online)

Abstract

Liver fibrosis is the final common pathway of chronic or iterative liver damage. Advanced chronic fibrosis is described as cirrhosis with a loss of architecture and attendant functional failure and the development of life-threatening complications. However, compelling evidence from rodent models and human studies indicates that if the injury is removed liver fibrosis is reversible. Hepatocytes, activated hepatic stellate cells, endothelial and immune cells, particularly macrophages, cooperate in the establishment and resolution of liver fibrosis. Here the authors provide a short overview of the mechanisms regulating the profibrotic and proresolution response, with the aim of highlighting potential new therapeutic targets. Liver disease is a major unmet medical need; currently, the sole approaches are the withdrawal of the injurious stimulus and liver transplantation. The authors conclude with a brief review of the feasibility of macrophage-based cell therapy for liver fibrosis.

 
  • References

  • 1 Iredale JP, Bataller R. Identifying molecular factors that contribute to resolution of liver fibrosis. Gastroenterology 2014; 146 (5) 1160-1164
  • 2 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (3) 181-194
  • 3 Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci (Lond) 2007; 112 (5) 265-280
  • 4 Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117 (3) 539-548
  • 5 Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta 2013; 1832 (7) 876-883
  • 6 Aravinthan AD, Alexander GJ. Senescence in chronic liver disease: is the future in aging?. J Hepatol 2016; 65 (4) 825-834
  • 7 Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol 2016; 13 (3) 347-353
  • 8 Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol 2016; 18 (3) 246-254
  • 9 Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol 2016; 43: 22-29
  • 10 Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 2015; 62 (1, Suppl) S157-S169
  • 11 Liu Y, Meyer C, Xu C , et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304 (5) G449-G468
  • 12 Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984; 65 (3) 305-311
  • 13 Greenhalgh SN, Conroy KP, Henderson NC. Cre-ativity in the liver: transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology 2015; 61 (6) 2091-2099
  • 14 Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328 (25) 1828-1835
  • 15 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82 (24) 8681-8685
  • 16 Issa R, Zhou X, Constandinou CM , et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126 (7) 1795-1808
  • 17 Iredale JP. Tissue inhibitors of metalloproteinases in liver fibrosis. Int J Biochem Cell Biol 1997; 29 (1) 43-54
  • 18 Consolo M, Amoroso A, Spandidos DA, Mazzarino MC. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). Int J Mol Med 2009; 24 (2) 143-152
  • 19 Docherty AJ, O'Connell J, Crabbe T, Angal S, Murphy G. The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue diseases. Trends Biotechnol 1992; 10 (6) 200-207
  • 20 Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 2007; 46 (5) 955-975
  • 21 Yoshiji H, Kuriyama S, Yoshii J , et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 2002; 36 (4 Pt 1): 850-860
  • 22 Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16 (11) 1321-1329
  • 23 Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015; 148 (1) 30-36
  • 24 Carloni V, Luong TV, Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int 2014; 34 (6) 834-843
  • 25 Lemoinne S, Cadoret A, El Mourabit H, Thabut D, Housset C. Origins and functions of liver myofibroblasts. Biochim Biophys Acta 2013; 1832 (7) 948-954
  • 26 Forbes SJ, Parola M. Liver fibrogenic cells. Best Pract Res Clin Gastroenterol 2011; 25 (2) 207-217
  • 27 Pellicoro A, Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Fibrogenesis Tissue Repair 2012; 5 (Suppl. 01) S26
  • 28 Preaux AM, D'ortho MP, Bralet MP, Laperche Y, Mavier P. Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2. Hepatology 2002; 36 (3) 615-622
  • 29 Wright MC, Issa R, Smart DE , et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 2001; 121 (3) 685-698
  • 30 Troeger JS, Mederacke I, Gwak GY , et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 2012; 143 (4) 1073-83.e22
  • 31 Kisseleva T, Cong M, Paik Y , et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (24) 9448-9453
  • 32 Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 2006; 21 (Suppl. 03) S84-S87
  • 33 Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016; S0301-4681(15)30100-6
  • 34 Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59 (3) 583-594
  • 35 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (5) 1158-1172
  • 36 Campana L, Bosurgi L, Rovere-Querini P. HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 2008; 20 (5) 518-523
  • 37 Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury. Hepatology 2010; 51 (2) 621-632
  • 38 Sitia G, Iannacone M, Müller S, Bianchi ME, Guidotti LG. Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J Leukoc Biol 2007; 81 (1) 100-107
  • 39 Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 2009; 323 (5922): 1722-1725
  • 40 Park BJ, Lee YJ, Lee HR. Chronic liver inflammation: clinical implications beyond alcoholic liver disease. World J Gastroenterol 2014; 20 (9) 2168-2175
  • 41 Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol 2006; 79 (6) 1348-1356
  • 42 Kishore R, McMullen MR, Cocuzzi E, Nagy LE. Lipopolysaccharide-mediated signal transduction: stabilization of TNF-alpha mRNA contributes to increased lipopolysaccharide-stimulated TNF-alpha production by Kupffer cells after chronic ethanol feeding. Comp Hepatol 2004; 3 (Suppl. 01) S31
  • 43 Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J Immunol 2009; 183 (2) 1320-1327
  • 44 Rensen SS, Slaats Y, Driessen A , et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology 2009; 50 (6) 1809-1817
  • 45 Gao B, Seki E, Brenner DA , et al. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300 (4) G516-G525
  • 46 Roychowdhury S, McMullen MR, Pritchard MT , et al. An early complement-dependent and TLR-4-independent phase in the pathogenesis of ethanol-induced liver injury in mice. Hepatology 2009; 49 (4) 1326-1334
  • 47 Park SH, Kim BI, Yun JW , et al. Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men. J Gastroenterol Hepatol 2004; 19 (6) 694-698
  • 48 Wang CC, Lin SK, Tseng YF , et al. Elevation of serum aminotransferase activity increases risk of carotid atherosclerosis in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2009; 24 (8) 1411-1416
  • 49 Zhang Z, Lin C, Peng L , et al. High mobility group box 1 activates Toll like receptor 4 signaling in hepatic stellate cells. Life Sci 2012; 91 (5–6): 207-212
  • 50 Dangi A, Sumpter TL, Kimura S , et al. Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol 2012; 188 (8) 3667-3677
  • 51 Dunham RM, Thapa M, Velazquez VM , et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 2013; 190 (5) 2009-2016
  • 52 Langhans B, Alwan AW, Krämer B , et al. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J Hepatol 2015; 62 (2) 398-404
  • 53 Thomas JA, Pope C, Wojtacha D , et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 2011; 53 (6) 2003-2015
  • 54 Saito JM, Bostick MK, Campe CB, Xu J, Maher JJ. Infiltrating neutrophils in bile duct-ligated livers do not promote hepatic fibrosis. Hepatol Res 2003; 25 (2) 180-191
  • 55 Harty MW, Muratore CS, Papa EF , et al. Neutrophil depletion blocks early collagen degradation in repairing cholestatic rat livers. Am J Pathol 2010; 176 (3) 1271-1281
  • 56 Duffield JS, Forbes SJ, Constandinou CM , et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115 (1) 56-65
  • 57 Ramachandran P, Iredale JP. Liver fibrosis: a bidirectional model of fibrogenesis and resolution. QJM 2012; 105 (9) 813-817
  • 58 Falasca L, Bergamini A, Serafino A, Balabaud C, Dini L. Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp Cell Res 1996; 224 (1) 152-162
  • 59 Dini L, Pagliara P, Carlà EC. Phagocytosis of apoptotic cells by liver: a morphological study. Microsc Res Tech 2002; 57 (6) 530-540
  • 60 Ramachandran P, Pellicoro A, Vernon MA , et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (46) E3186-E3195
  • 61 Bain CC, Hawley CA, Garner H , et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat Commun 2016; 7: s11852
  • 62 Scott CL, Zheng F, De Baetselier P , et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7: 10321
  • 63 Zigmond E, Samia-Grinberg S, Pasmanik-Chor M , et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 2014; 193 (1) 344-353
  • 64 Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30 (3) 245-257
  • 65 Karlmark KR, Weiskirchen R, Zimmermann HW , et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009; 50 (1) 261-274
  • 66 Ehling J, Bartneck M, Wei X , et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 2014; 63 (12) 1960-1971
  • 67 Yang L, Kwon J, Popov Y , et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 2014; 146 (5) 1339-50.e1
  • 68 Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A 1997; 94 (20) 10663-10668
  • 69 Wynn TA, Cheever AW, Jankovic D , et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 1995; 376 (6541): 594-596
  • 70 Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004; 4 (8) 583-594
  • 71 Rolla S, Alchera E, Imarisio C , et al. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clin Sci (Lond) 2016; 130 (3) 193-203
  • 72 Oh K, Seo MW, Kim YW, Lee DS. Osteopontin potentiates pulmonary inflammation and fibrosis by modulating IL-17/IFN-γ-secreting T-cell ratios in bleomycin-treated mice. Immune Netw 2015; 15 (3) 142-149
  • 73 Angaswamy N, Tiriveedhi V, Sarma NJ , et al. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection. Hum Immunol 2013; 74 (11) 1478-1485
  • 74 Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27: 485-517
  • 75 Katz SC, Ryan K, Ahmed N , et al. Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis. J Immunol 2011; 187 (3) 1150-1156
  • 76 Turner JD, Jenkins GR, Hogg KG , et al. CD4+CD25+ regulatory cells contribute to the regulation of colonic Th2 granulomatous pathology caused by schistosome infection. PLoS Negl Trop Dis 2011; 5 (8) e1269
  • 77 Langhans B, Krämer B, Louis M , et al. Intrahepatic IL-8 producing Foxp3+CD4+ regulatory T cells and fibrogenesis in chronic hepatitis C. J Hepatol 2013; 59 (2) 229-235
  • 78 Safadi R, Ohta M, Alvarez CE , et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 2004; 127 (3) 870-882
  • 79 Novobrantseva TI, Majeau GR, Amatucci A , et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005; 115 (11) 3072-3082
  • 80 Geissmann F, Cameron TO, Sidobre S , et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3 (4) e113
  • 81 Wehr A, Baeck C, Heymann F , et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J Immunol 2013; 190 (10) 5226-5236
  • 82 Sheel M, Beattie L, Frame TC , et al. IL-17A-producing γδ T cells suppress early control of parasite growth by monocytes in the liver. J Immunol 2015; 195 (12) 5707-5717
  • 83 Liang Y, Jie Z, Hou L , et al. IL-33 induces nuocytes and modulates liver injury in viral hepatitis. J Immunol 2013; 190 (11) 5666-5675
  • 84 McHedlidze T, Waldner M, Zopf S , et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (2) 357-371
  • 85 Verhulst S, Best J, van Grunsven LA, Dollé L. Advances in hepatic stem/progenitor cell biology. EXCLI J 2015; 14: 33-47
  • 86 Marshall A, Rushbrook S, Davies SE , et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 2005; 128 (1) 33-42
  • 87 Tachtatzis PM, Marshall A, Aravinthan A , et al. Correction: chronic hepatitis B virus infection: the relation between hepatitis B antigen expression, telomere length, senescence, inflammation and fibrosis. PLoS One 2015; 10 (7) e0134315
  • 88 Aravinthan A, Pietrosi G, Hoare M , et al. Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcohol-related liver disease. PLoS One 2013; 8 (9) e72904
  • 89 Richardson MM, Jonsson JR, Powell EE , et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007; 133 (1) 80-90
  • 90 Wood MJ, Gadd VL, Powell LW, Ramm GA, Clouston AD. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression. Hepatology 2014; 59 (3) 848-857
  • 91 Yang S, Koteish A, Lin H , et al. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. Hepatology 2004; 39 (2) 403-411
  • 92 Sadri AR, Jeschke MG, Amini-Nik S. Advances in liver regeneration: revisiting hepatic stem/progenitor cells and their origin. Stem Cells Int 2016; 2016 (16) 7920897
  • 93 Kaur S, Siddiqui H, Bhat MH. Hepatic progenitor cells in action: liver regeneration or fibrosis?. Am J Pathol 2015; 185 (9) 2342-2350
  • 94 Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13 (8) 473-485
  • 95 Lu WY, Bird TG, Boulter L , et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 2015; 17 (8) 971-983
  • 96 Boulter L, Govaere O, Bird TG , et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 2012; 18 (4) 572-579
  • 97 Caralt M, Velasco E, Lanas A, Baptista PM. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10 (2) 250-259
  • 98 Sudo R. Multiscale tissue engineering for liver reconstruction. Organogenesis 2014; 10 (2) 216-224
  • 99 Smedsrød B. Clearance function of scavenger endothelial cells. Comp Hepatol 2004; 3 (Suppl. 01) S22
  • 100 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88 (1) 125-172
  • 101 Bird TG, Lu WY, Boulter L , et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci U S A 2013; 110 (16) 6542-6547
  • 102 Moore JK, Mackinnon AC, Wojtacha D , et al. Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy 2015; 17 (11) 1604-1616
  • 103 Senju S, Koba C, Haruta M , et al. Application of iPS cell-derived macrophages to cancer therapy. OncoImmunology 2014; 3 (1) e27927
  • 104 King A, Barton D, Beard HA , et al. REpeated AutoLogous Infusions of STem cells In Cirrhosis (REALISTIC): a multicentre, phase II, open-label, randomised controlled trial of repeated autologous infusions of granulocyte colony-stimulating factor (GCSF) mobilised CD133+ bone marrow stem cells in patients with cirrhosis. A study protocol for a randomised controlled trial. BMJ Open 2015; 5 (3) e007700
  • 105 Friedman S, Sanyal A, Goodman Z , et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials 2016; 47: 356-365
  • 106 Lefebvre E, Moyle G, Reshef R , et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 2016; 11 (6) e0158156
  • 107 Terai S, Tsuchiya A. Status of and candidates for cell therapy in liver cirrhosis: overcoming the “point of no return” in advanced liver cirrhosis. J Gastroenterol 2017; 52 (2) 129-140
  • 108 Dobie R, Henderson NC. Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis. F1000 Res 2016; 5: F1000 Faculty Rev-1749