Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(11): 1525-1529
DOI: 10.1055/s-0037-1610130
DOI: 10.1055/s-0037-1610130
letter
Copper-Catalyzed Direct C-5 Fluorination of 8-Aminoquinolines by Remote C–H Activation
The authors gratefully acknowledge funding from National Natural Science Foundation of China (81561148013, 31560010, 21502239), Key Projects of Technological Innovation of Hubei Province (No. 2016ACA138), Hubei Provincial Natural Science Foundation of China (2018CFB222), "the Fundamental Research Funds for the Central Universities", South-Central University for Nationalities (CZQ17008).Further Information
Publication History
Received: 02 February 2018
Accepted after revision: 06 April 2018
Publication Date:
16 May 2018 (online)
Abstract
A convenient method was developed for direct regioselective fluorination of 8-aminoquinolines at the C-5 position by copper-catalyzed remote C–H activation using Selectfluor as the electrophile fluorinating reagent. With this method, diverse fluorinated quinoline derivatives were facilely obtained under mild conditions with moderate yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610130.
- Supporting Information
Primary Data
- for this article are available online at https://doi.org/10.1055/s-0037-1610130.
Please note that the DOI for the Primary Data associated with this article was updated on April 20, 2021 and is now 10.4125/pd0088th.
- Primary Data
-
References and Notes
- 1a Singh S. Kaur G. Mangla V. Gupta MK. J. Enzyme Inhib. Med. Chem. 2015; 30: 492
- 1b Michael JP. Nat. Prod. Rep. 2007; 24: 223
- 2 Hamer FM. J. Chem. Soc., Trans. 1921; 119: 1432
- 3a Adhikari S. Mandal S. Ghosh A. Das P. Das D. J. Org. Chem. 2015; 80: 8530
- 3b Niu W. Fan L. Nan M. Li Z. Lu D. Wong M. Shuang S. Dong C. Anal. Chem. 2015; 87: 2788
- 4a Kaur K. Jain M. Reddy RP. Jain R. Eur. J. Med. Chem. 2010; 45: 3245
- 4b Hussaini SM. A. Expert Opin. Ther. Pat. 2016; 26: 1201
- 4c Kumar S. Bawa S. Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
- 5 Zaitsev VG. Shabashov D. Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 6 Sun H. Zhang Y. Chen P. Wu Y.-D. Zhang X. Huang Y. Adv. Synth. Catal. 2016; 358: 1946
- 7a Iwai T. Sawamura M. ACS Catal. 2015; 5: 5031
- 7b Prajapati SM. Patel KD. Vekariya RH. Panchal SN. Patel HD. RSC Adv. 2014; 4: 24463
- 7c Stephens DE. Larionov OV. Tetrahedron 2015; 71: 8683
- 7d Ramann GA. Cowen BJ. Molecules 2016; 21: 986
- 8a Berman AM. Lewis JC. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2008; 130: 14926
- 8b Wasa M. Worrell BT. Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 1275
- 8c Chen Q. du Jourdin XM. Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
- 8d Kwak J. Kim M. Chang S. J. Am. Chem. Soc. 2011; 133: 3780
- 9 Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
- 10a Xu J. Zhu X. Zhou G. Ying B. Ye P. Su L. Shen C. Zhang P. Org. Biomol. Chem. 2016; 14: 3016
- 10b Khan B. Kant R. Koley D. Adv. Synth. Catal. 2016; 358: 2352
- 10c Qiao H. Sun S. Yang F. Zhu Y. Kang J. Wu Y. Wu Y. Adv. Synth. Catal. 2017; 359: 1976
- 11 Whiteoak CJ. Planas O. Company A. Ribas X. Adv. Synth. Catal. 2016; 358: 1679
- 12 Liang HW. Jiang K. Ding W. Yuan Y. Shuai L. Chen YC. Wei Y. Chem. Commun. 2015; 51: 16928
- 13 Dou YD. Xie ZD. Shen C. Zhang PF. Zhu Q. ChemCatChem 2016; 8: 3570
- 14 Du C. Li P.-X. Zhu X. Suo J.-F. Niu J.-L. Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
- 15 Sun MM. Sun SY. Qiao HJ. Yang F. Zhu Y. Kang JX. Wu YS. Wu YJ. Org. Chem. Front. 2016; 3: 1646
- 16a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 16b Wang J. Sánchez-Roselló M. Aceña JL. Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 16c Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
- 17a Chu L. Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 17b Watson DA. Su M. Teverovskiy G. Zhang Y. Garcia-Fortanet J. Kinzel T. Buchwald SL. Science 2009; 325: 1661
- 18a Grushin VV. Acc. Chem. Res. 2010; 43: 160
- 18b Li Y. Wu Y. Li S.-G. Wang X.-S. Adv. Synth. Catal. 2014; 356: 1412
- 18c Furuya T. Ritter T. J. Am. Chem. Soc. 2008; 130: 10060
- 18d Wang X. Mei T.-S. Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 7520
- 19a Kuninobu Y. Nishi M. Kanai M. Org. Biomol. Chem. 2016; 14: 8092
- 19b Wu Z. He Y. Ma C. Zhou X. Liu X. Li Y. Hu T. Wen P. Huang G. Asian J. Org. Chem. 2016; 5: 724
- 19c Jin L.-K. Lu G.-P. Cai C. Org. Chem. Front. 2016; 3: 1309
- 19d Shen C. Xu J. Ying B. Zhang P. ChemCatChem 2016; 8: 3560
- 20a Chen H. Li PH. Wang M. Wang L. Org. Lett. 2016; 18: 4794
- 20b Xu J. Qiao L. Ying B. Zhu X. Shen C. Zhang P. Org. Chem. Front. 2017; 4: 1116
- 20c Arockiam P. Guillemard L. Adv. Synth. Catal. 2017; 359: 2571
- 21 Ding J. Zhang Y. Li J. Org. Chem. Front. 2017; 4: 1528
- 22 Fluorinated Product 2a–t, General Procedure 8-Aminoquinoline derivatives 1 (0.1 mmol, 1.0 equiv), Cu(OAc)2 (0.02 mmol, 0.2 equiv), Selectfluor (0.15 mmol, 1.5 equiv), KH2PO4 (0.2 mmol, 2.0 equiv), and Na2SO4 (50 mg) were weighed into an oven-dried Schlenk tube, and MeOH (1 mL) was added. The reaction vessel was capped and vacuum-flushed with N2 three times. The reaction was stirred under N2 atmosphere at 80 °C, and the progress of the fluorination was monitored by TLC. Upon complete consumption of 1, the reaction was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation, and the residue was purified by silica gel flash chromatography using PE/EtOAc (100:1 to 20:1) to afford fluorinated product 2. N-(5-Fluoroquinolin-8-yl)-4-methylbenzamide (2a) 45% yield, white solid. 1H NMR (600 MHz, chloroform-d): δ = 10.52 (s, 1 H), 8.94–8.85 (m, 2 H), 8.47 (dd, J = 8.4, 1.7 Hz, 1 H), 8.01–7.94 (m, 2 H), 7.56 (dd, J = 8.4, 4.2 Hz, 1 H), 7.40–7.33 (m, 2 H), 7.30–7.27 (m, 1 H), 2.46 (s, 3 H). 13C NMR (151 MHz, chloroform-d): δ = 165.48 , 153.87 (d, J = 250.7 Hz), 149.22, 142.55, 139.09 (d, J = 3.0 Hz), 132.28, 131.35 (d, J = 3.0 Hz), 129.98 (d, J = 3.0 Hz), 129.62, 127.37, 121.87 (d, J = 3.0 Hz), 119.00 (d, J = 3.0 Hz), 116.09 (d, J = 7.6 Hz), 110.72 (d, J = 19.6 Hz), 21.71. 19F NMR (565 MHz, chloroform-d): δ = –129.22. HRMS (ESI): m/z calcd for C17H14ON2F [M + H]+: 281.1090; found: 281.1086. 4-Fluoro-N-(5-fluoroquinolin-8-yl)benzamide (2g) 38% yield, white solid. 1H NMR (600 MHz, chloroform-d): δ = 10.50 (s, 1 H), 8.91 (dd, J = 4.2, 1.6 Hz, 1 H), 8.87 (dd, J = 8.6, 5.3 Hz, 1 H), 8.48 (dd, J = 8.4, 1.7 Hz, 1 H), 8.12–8.06 (m, 2 H), 7.57 (dd, J = 8.4, 4.2 Hz, 1 H), 7.30–7.23 (m, 3 H). 13C NMR (151 MHz, chloroform-d): δ = 165.83, 164.23, 164.16, 153.89 (d, J = 252.2 Hz), 149.16, 138.92 (d, J = 3.0 Hz), 131.16 (d, J = 3.0 Hz), 130.96 (d, J = 4.5 Hz), 129.95 (d, J = 4.5 Hz), 129.64 (d, J = 9.1 Hz), 121.82 (d, J = 1.5 Hz), 118.90 (d, J = 18.1 Hz), 116.07 (d, J = 9.1 Hz), 115.97 (d, J = 22.6 Hz), 110.59 (d, J = 19.6 Hz). 19F NMR (565 MHz, chloroform-d): δ = –107.51, –128.74. HRMS (ESI): m/z calcd for C16H11ON2F2 [M + H]+: 285.0839; found: 285.0833. N-(5-Fluoroquinolin-8-yl)-2,6-dimethoxybenzamide (2i) 34% yield, white solid. 1H NMR (600 MHz, chloroform-d): δ = 10.10 (s, 1 H), 8.99 (dd, J = 7.6, 1.3 Hz, 1 H), 8.78 (dd, J = 4.2, 1.7 Hz, 1 H), 8.18 (dd, J = 8.2, 1.7 Hz, 1 H), 7.61 (t, J = 7.9 Hz, 1 H), 7.56 (dd, J = 8.3, 1.4 Hz, 1 H), 7.45 (dd, J = 8.2, 4.2 Hz, 1 H), 7.14 (dd, J = 11.2, 9.1 Hz, 1 H), 6.64 (dd, J = 9.2, 3.3 Hz, 1 H), 4.01 (d, J = 1.9 Hz, 3 H), 3.83 (s, 3 H). 13C NMR (151 MHz, chloroform-d): δ = 162.92 (d, J = 3.0 Hz), 153.18 (d, J = 3.0 Hz), 150.80 (d, J = 241.6 Hz), 148.35, 145.77 (d, J = 12.1 Hz) 138.60, 136.44, 134.76, 128.10, 127.60, 121.97, 121.73, 117.79 (d, J = 21.1 Hz), 117.01, 106.10 (d, J = 7.6 Hz), 62.32 (d, J = 4.5 Hz), 56.49. 19F NMR (565 MHz, chloroform-d): δ = –139.30, –139.33. HRMS (ESI): m/z calcd for C18H16O3N2F [M + H]+: 327.1145; found: 327.1140. 2,3,4,5,6-Pentafluoro-N-(5-fluoroquinolin-8-yl)benzamide (2j) 23% yield, white solid. 1H NMR (600 MHz, chloroform-d): δ = 10.19 (s, 1 H), 8.87 (ddd, J = 4.7, 3.0, 1.7 Hz, 1 H), 8.83 (ddd, J = 8.9, 5.3, 3.8 Hz, 1 H), 8.48 (ddd, J = 8.4, 4.2, 1.7 Hz, 1 H), 7.58 (ddd, J = 8.5, 4.2, 2.9 Hz, 1 H), 7.32–7.27 (m, 1 H). 13C NMR (151 MHz, chloroform-d): δ = 155.23, 154.61 (d, J = 253.7 Hz), 149.49, 145.35 (m), 143.66 (m), 141.81 (m), 138.65 (m), 136.98 (m), 130.07 (m), 122.08, 118.90 (dd, J = 18.4, 3.6 Hz), 116.99 (d, J = 9.1 Hz), 116.94 (m), 110.51(dd, J = 19.6, 2.8 Hz). 19F NMR (565 MHz, chloroform-d): δ = –126.79, –139.92 (d, J = 19.0 Hz), –149.94 (d, J = 20.9 Hz), –149.99, –159.64 (t, J = 19.2 Hz). HRMS (ESI): m/z calcd for C16H7ON2F6 [M + H]+: 357.0463; found: 357.0457.
For selected reviews, see:
For represented examples, see:
For selected examples, see: