Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(20): 4089-4096
DOI: 10.1055/s-0037-1610212
DOI: 10.1055/s-0037-1610212
paper
Direct Oxytosylation of 8-Amidoquinolines by Koser’s Reagent: An Efficient Strategy for 5-Substituted 8-Amidoquinolines
Further Information
Publication History
Received: 09 May 2018
Accepted after revision: 20 June 2018
Publication Date:
07 August 2018 (online)
Abstract
A metal-free remote oxytosylation of 8-amidoquinolines has been achieved using Koser’s reagent to produce 5-tosyloxy-8-amidoquinolines in good yields. This method is compatible with various functional groups present on the aromatic ring.
Key words
Koser’s reagent - C–H activation - 8-amidoquinolines - oxytosylation - hypervalent iodine reagentsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610212. Copies of 1H and 13C NMR spectra of products are provided.
- Supporting Information
-
References
- 1a Arnold R. Nutter W. Stepp W. J. Org. Chem. 1959; 24: 117
- 1b Clawson RW. Deavers RE. Akhmedov NG. Soderberg BC. G. Tetrahedron 2006; 62: 10829
- 1c Pan L. Wang L. Chen Q. He M. Synth. Commun. 2016; 24: 198
- 2 John OR. S. Killeen NM. Knowles DA. Yau SC. Bagley MC. Tomkinson NC. O. Org. Lett. 2007; 9: 4009
- 3a Yan Q. Chen Z. Yu W. Yin H. Liu Z. Zhang Y. Org. Lett. 2015; 17: 2482
- 3b Ye X. Petersen JL. Shi X. Chem. Commun. 2015; 51: 7863
- 3c Reddy VP. Qiu R. Iwasaki T. Kambe N. Org. Biomol. Chem. 2015; 13: 6803
- 3d Liu J. Zhuang S. Gui Q. Chen X. Wang W. Ten Z. Chem. Commun. 2015; 51: 6418
- 3e Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
- 3f Whiteoak CJ. Planas O. Company A. Ribas X. Adv. Synth. Catal. 2016; 358: 1679
- 3g Dou Y. Xie Z. Sun Z. Fang H. Shen C. Zhang P. ChemCatChem 2016; 8: 3570
- 3h Liang S. Manolikakes G. Adv. Synth. Catal. 2016; 358: 2371
- 3i Chen H. Li P. Wang M. Wang L. Org. Lett. 2016; 18: 4794
- 3j Arockiam PA. Guillemard L. Delord JW. Adv. Synth. Catal. 2017; 359: 2571
- 3k Li JM. Wang YH. Yu Y. Wu RB. Weng J. Lu G. ACS Catal. 2017; 7: 2661
- 3l Ghosh T. Maity P. Ranu BC. Org. Lett. 2018; 20, 1011
- 3m Mondal S. Hajra A. Org. Biomol. Chem. 2018; 16: 2846
- 4a Liang H. Jiang K. Ding W. Yuan Y. Shuai L. Chen Y. Wei Y. Chem. Commun. 2015; 51: 16928
- 4b Xu J. Zhu X. Zhou G. Ying B. Ye P. Su L. Shen C. Zhang P. Org. Biomol. Chem. 2016; 14: 3016
- 4c Cong X. Zeng X. Org. Lett. 2014; 16: 3716
- 4d Liu X. Wu Z. Luo X. He Y. Zhou X. Fan Y. Huang G. RSC Adv. 2016; 6: 71485
- 5 Koser GF. Relenyi AG. Kalos AN. Rebrovic L. Wettach RH. J. Org. Chem. 1982; 47: 2487
- 6 Shen C. Yang M. Xu J. Chen C. Zheng K. Shen J. Zhang P. RSC Adv. 2017; 7: 49436
- 7a Reddy BV. S. Reddy CR. Reddy MR. Yarlagadda S. Sridhar B. Org. Lett. 2015; 17: 3730
- 7b Reddy CR. Yarlagadda S. Ramesh B. Reddy MR. Sridhar B. Reddy BV. S. Eur. J. Org. Chem. 2017; 2332
- 8a Hao X. Chen L. Ren B. Li L. Yang X. Gong J. Niu J. Song M. Org. Lett. 2014; 16: 1104
- 8b Yang Y. Shi L. Zhou Y. Li H. Zhu W. Zhu H. Bioorg. Med. Chem. 2010; 20: 6653
- 9a Yusubov MS. Wirth T. Org. Lett. 2005; 7: 519
- 9b Nabana T. Togo H. J. Org. Chem. 2002; 67: 4362
- 9c Abe S. Sakuratani K. Togo H. J. Org. Chem. 2001; 66: 6174
- 9d Tuncay A. Dustman JA. Fisher G. Tuncay CI. Tetrahedron Lett. 1992; 33: 7647
- 10 CCDC 1553346 contains supplementary crystallographic data for the structure 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.