RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(10): 1498-1511
DOI: 10.1055/s-0037-1610749
DOI: 10.1055/s-0037-1610749
paper
Highly Enantioselective Rh-Catalyzed Arylation of N,N-Dimethylsulfamoyl-Protected Aldimines and Cyclic N-Sulfonylimines with Chiral Phenyl Backbone Sulfoxide-Olefin Ligands
National Natural Science Foundation of China (21172218)Weitere Informationen
Publikationsverlauf
Received: 12. November 2019
Accepted after revision: 17. Januar 2020
Publikationsdatum:
10. Februar 2020 (online)
Abstract
With chiral 2-methoxy-1-naphthylsulfinyl-based phenyl backbone sulfoxide-olefin ligands, a highly Rh-catalyzed addition of arylboronic acids to N,N-dimethylsulfamoyl-protected aldimines has been developed to afford a broad range of chiral diarylmethylamines in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Moreover, efficient enantioselective arylation of cyclic N-sulfonylimines was also achieved with excellent enantioselectivities (up to 98% ee).
Key words
arylation - arylboronic acids - N,N-dimethylsulfamoyl-protected aldimines - sulfoxide-olefin ligands - asymmetric catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610749.
- Supporting Information
-
References
- 1a Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
- 1b Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
- 1c Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
- 2a Mariz R, Luan XJ, Gatti M, Linden A, Dorta R. J. Am. Chem. Soc. 2008; 130: 2172
- 2b Bürgi J, Mariz R, Gatti M, Drinkel E, Luan XJ, Blumentritt S, Linden A, Dorta R. Angew. Chem. Int. Ed. 2009; 48: 2768
- 2c Mariz R, Poater A, Gatti M, Drinkel E, Bürgi JJ, Luan XJ, Blumentritt S, Linden A, Cavallo L, Dorta R. Chem. Eur. J. 2010; 16: 14335
- 2d Zhao GZ, Sipos G, Salvador A, Ou A, Gao PC, Skelton BW, Dorta R. Adv. Synth. Catal. 2016; 358: 1759
- 2e Zhao GZ, Foster D, Sipos G, Gao PC, Skelton BW, Sobolev AN, Dorta R. J. Org. Chem. 2018; 83: 9741
- 3a Chen QA, Dong X, Chen MW, Wang DS, Zhou YG, Li YX. Org. Lett. 2010; 12: 1928
- 3b Chen J, Chen JM, Lang F, Zhang XY, Cun LF, Zhu J, Deng JG, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
- 3c Khiar N, Salvador A, Valdivia V, Chelouan A, Alcudia A, Alvarez E, Fernandez I. J. Org. Chem. 2013; 78: 6510
- 4a Lang F, Chen GH, Li LC, Xing JW, Han FZ, Cun LF, Liao J. Chem. Eur. J. 2011; 17: 5242
- 4b Du L, Cao P, Xing JW, Lou YZ, Jiang LY, Li LC, Liao J. Angew. Chem. Int. Ed. 2013; 52: 4207
- 4c Jia T, Cao P, Wang B, Lou YZ, Yin XM, Wang M, Liao J. J. Am. Chem. Soc. 2015; 137: 13760
- 4d Chen B, Cao P, Yin XM, Liao Y, Jiang LY, Ye JL, Wang M, Liao J. ACS Catal. 2017; 7: 2425
- 4e Wang B, Wang XH, Yin XM, Yu WZ, Liao Y, Ye JL, Wang M, Liao J. Org. Lett. 2019; 21: 3913
- 5a Thaler T, Guo LN, Steib AK, Raducan M, Karaghiosoff K, Mayer P, Knochel P. Org. Lett. 2011; 13: 3182
- 5b Chen GH, Gui JY, Li LC, Liao J. Angew. Chem. Int. Ed. 2011; 50: 7681
- 5c Zhu TS, Jin SS, Xu MH. Angew. Chem. Int. Ed. 2012; 51: 780
- 5d Feng XQ, Xie YZ, Yang J, Du HF. Org. Lett. 2012; 14: 624
- 5e Liu ZQ, Feng XQ, Du HF. Org. Lett. 2012; 14: 3154
- 5f Feng X, Du H. Asian J. Org. Chem. 2012; 1: 204
- 5g Wang H, Jiang T, Xu MH. J. Am. Chem. Soc. 2013; 135: 971
- 5h Xue F, Li CG, Chen J, Wan BS. Chin. J. Org. Chem. 2014; 34: 267
- 5i Li Y, Xu MH. Chem. Commun. 2014; 50: 3771
- 5j Li Y, Yu YN, Xu MH. ACS Catal. 2016; 6: 661
- 5k Zhang YF, Chen D, Chen WW, Xu MH. Org. Lett. 2016; 18: 2726
- 5l Jiang T, Chen WW, Xu MH. Org. Lett. 2017; 19: 2138
- 5m Wu CY, Zhang YF, Xu MH. Org. Lett. 2018; 20: 1789
- 5n Li Y, Liu B, Xu MH. Org. Lett. 2018; 20: 2306
- 5o Wang Z, Xu MH. Org. Biomol. Chem. 2018; 16: 4633
- 5p Wu CY, Xu MH. Org. Lett. 2019; 21: 5035
- 6 Kuriyama M, Soeta T, Hao X, Chen Q, Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
- 7 Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J. Am. Chem. Soc. 2004; 126: 13584
- 8a Hayashi T, Kawai M, Tokunaga N. Angew. Chem. Int. Ed. 2004; 43: 6125
- 8b Weix DJ, Shi YL, Ellman JA. J. Am. Chem. Soc. 2005; 127: 1092
- 8c Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005
- 8d Trincado M, Ellman JA. Angew. Chem. Int. Ed. 2008; 47: 5623
- 8e Gao X, Wu B, Yan Z, Zhou YG. Org. Biomol. Chem. 2016; 14: 55
- 9a Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
- 9b Bolm C, Hildebrand JP, Muñiz K, Hermanns N. Angew. Chem. Int. Ed. 2001; 40: 3284
- 9c Schmidt F, Stemmler RT, Rudolph J, Bolm C. Chem. Soc. Rev. 2006; 35: 454
- 9d Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
- 10a Otomaru Y, Tokunaga N, Shintani R, Hayashi T. Org. Lett. 2005; 7: 307
- 10b Duan HF, Jia YX, Wang LX, Zhou QL. Org. Lett. 2006; 8: 2567
- 10c Nakagawa H, Rech JC, Sindelar RW, Ellman JA. Org. Lett. 2007; 9: 5155
- 10d Wang ZQ, Feng CG, Xu MH, Lin GQ. J. Am. Chem. Soc. 2007; 129: 5336
- 10e Shao C, Yu HJ, Wu NY, Feng CG, Lin GQ. Org. Lett. 2010; 12: 3820
- 10f Chen CC, Gopula B, Syu JF, Pan JH, Kuo TS, Wu PY, Henschke JP, Wu HL. J. Org. Chem. 2014; 79: 8077
- 10g Zhao GZ, Sipos G, Salvador A, Ou A, Gao PC, Skelton BW, Dorta R. Adv. Synth. Catal. 2016; 358: 1759
- 10h Shan HY, Zhou QX, Yu JL, Zhang SQ, Hong X, Lin XF. J. Org. Chem. 2018; 83: 11873
- 11 Jagt RB. C, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew. Chem. Int. Ed. 2006; 45: 2789
- 12 Cao Z, Du H. Org. Lett. 2010; 12: 2602
- 13 Lee A, Kim H. J. Org. Chem. 2016; 81: 3520
- 14 Jiang T, Chen WW, Xu MH. Org. Lett. 2017; 19: 2138
- 15a Xue F, Li XC, Wan BS. J. Org. Chem. 2011; 76: 7256
- 15b Xue F, Li XC, Wan BS. J. Org. Chem. 2012; 77: 3071
- 15c Xue F, Wang DP, Li XC, Wan BS. Org. Biomol. Chem. 2013; 11: 7893
- 15d Xue F, Liu QB, Zhu Y, Qin YF, Wan BS. RSC Adv. 2019; 9: 25377
- 16 We tried several experiments in which stoichiometric reactions between the ligand 1 and [RhCl(C2H4)]2 were conducted and the results were further checked through 1H NMR spectroscopy. The free olefin of the Ligand 1 was characterized by the presence in the 1H NMR spectrum of two doublets at 7.03 (Ha, J = 16 Hz) and 7.41 (Hb, J = 16 Hz) ppm. When the reaction was finished, the olefin was still present in the 1H NMR spectrum of two doublets at 7.03 (Ha, J = 16 Hz) and 7.41 (Hb, J = 16 Hz) ppm, which indicated that the ligand does not bind to the metal to show no appreciable reactivity in catalysis. Refer to Supporting Information (Page S106) for details.
- 17 Wang ZG, Feng CG, Zhang SS, Xu MH, Lin GQ. Angew. Chem. Int. Ed. 2010; 49: 5780
- 18 Determined by chiral HPLC analysis of its N-Ts derivative.
- 19a Hayashi T, Takahashi M, Takaya Y, Ogasawara M. J. Am. Chem. Soc. 2002; 124: 5052
- 19b Hayashi T, Ueyama K, Tokunaga N, Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508
- 20a Nishimura T, Noishiki A, Tsui GC, Hayashi T. J. Am. Chem. Soc. 2012; 134: 5056
- 20b Luo YF, Carnell AJ, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 6762
- 21 Huisman M, Tenhave R, Van Leusen AM. Synth. Commun. 1997; 27: 945
For reviews, see:
For other representative bis-sulfoxide examples, see:
For representative sulfoxide-phosphine examples, see:
For representative sulfoxide-olefin examples, see:
For representative examples, see:
For representative examples, see:
For representative examples on catalytic rhodium-catalyzed arylations of N-tosyl or -nosyl activated/protected imines with arylboron reagents, see: