Subscribe to RSS
DOI: 10.1055/s-0037-1610848
4-(N,N-Dimethylamino)pyridine (DMAP)-Catalyzed 1,3-Dipolar Cycloaddition of 3-Aminooxindole-Based Azomethine Ylides with α,β-Unsaturated Acyl Phosphonates for the Construction of Spiropyrrolidinyl-2,3′-oxindoles
We thank the National Natural Science Foundation of China (21762013), the Science and Technology Project of Guizhou Province (Qian Ke He LH Zi [2016] 7220, Qian Ke He SY Zi [2015] 3014 and Qian Ke He Ping Tai Ren Cai [2017] 5726), the Science and Technology Development Project of Education Department of Guizhou Province for Young Talents (Qian Jiao He KY Zi [2016] 133), the Doctoral Research Funds of Guizhou Normal University (2015) and the Innovation and Entrepreneurship Project of Guizhou Province for Undergraduates (2018520167) for generous financial support.Publication History
Received: 03 September 2018
Accepted after revision: 21 October 2018
Publication Date:
27 November 2018 (online)
Abstract
A novel, one-pot 1,3-dipolar cycloaddition of 3-amimooxindole-based azomethine ylides with α,β-unsaturated acyl phosphonates and subsequent derivatization of the intermediates is described. Employing 4-(N,N-dimethylamino)pyridine (DMAP), an organic Brønsted base, as a robust catalyst leads to an architecturally diverse set of spiropyrrolidinyl-2,3′-oxindoles bearing four contiguous stereocenters and an ester or an amide at the γ-position of the pyrrolidine motif. The products are obtained in moderate to excellent yields and with good diastereoselectivities under mild conditions. The potential of this methodology is demonstrated through a gram-scale reaction and a further transformation of one of the products.
Key words
DMAP - 1,3-dipolar cycloaddition - azomethine ylides - α,β-unsaturated acyl phosphonates - spiropyrrolidinyl-2,3′-oxindolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610848.
- Supporting Information
-
References
- 1a Nicolaou KC, Erande RD, Yin J, Vourloumis D, Aujay M, Sandoval J, Munneke S, Gavrilyuk J. J. Am. Chem. Soc. 2018; 140: 3690
- 1b Nicolaou KC, Rhoades D, Kumar SM. J. Am. Chem. Soc. 2018; 140: 8303
- 1c Sharma I, Tan DS. Nat. Chem. 2013; 5: 157
- 2a Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TY.-H, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2105
- 2b Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL. J. Am. Chem. Soc. 2008; 130: 2087
- 2c Rottmann M, McNamara C, Yeung BS. K, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez G, Lakshiminarayana L, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck H.-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
- 2d Wong F, Watson H, Gerbes A, Vilstrup H, Badalamenti S, Bernardi M, Ginès P. Gut 2012; 61: 108
- 2e Santos MM. M. Tetrahedron 2014; 70: 9735
- 2f Yu B, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2015; 97: 673
- 3a Tan B, Candeias NR, Barbas CF. III. Nat. Chem. 2011; 3: 473
- 3b Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
- 3c Shen L.-T, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 585
- 3d Qi L.-W, Yang Y, Gui Y.-Y, Zhang Y, Chen F, Tian F, Peng L, Wang L.-X. Org. Lett. 2014; 16: 6436
- 3e Zhou Z, Wang Z.-X, Zhou Y.-C, Xiao W, Ouyang Q, Du W, Chen Y.-C. Nat. Chem. 2017; 9: 590
- 4a Kumar RR, Perumal S, Senthilkumar P, Yogeeswari P, Sriram D. J. Med. Chem. 2008; 51: 5731
- 4b Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, Kumar RS, Osman H, Manogaran E. Bioorg. Med. Chem. Lett. 2010; 20: 7064
- 4c Girgis AS. Eur. J. Med. Chem. 2009; 44: 91
- 4d Raj AA, Raghunathan R, SrideviKumari MR, Raman N. Bioorg. Med. Chem. 2003; 11: 407
- 4e Arun Y, Bhaskar G, Balachandran C, Ignacimuthu S, Perumal PT. Bioorg. Med. Chem. Lett. 2013; 23: 1839
- 5a Afewerki S, Ma G, Ibrahem I, Liu L, Sun J, Córdova A. ACS Catal. 2015; 5: 1266
- 5b Zhang J.-X, Wang H.-Y, Jin Q.-W, Zheng C.-W, Zhao G, Shang Y.-J. Org. Lett. 2016; 18: 4774
- 5c Huang X, Liu M, Pham K, Zhang X, Yi W.-B, Jasinski JP, Zhang W. J. Org. Chem. 2016; 81: 5362
- 5d Samineni R, Madapa J, Pabbaraja S, Mehta G. Org. Lett. 2017; 19: 6152
- 5e Akaev AA, Villemson EV, Vorobyeva NS, Majouga AG, Budynina EM, Melnikov MY. J. Org. Chem. 2017; 82: 5689
- 6a Zheng P.-F, Ouyang Q, Niu S.-L, Shuai L, Yuan Y, Jiang K, Liu T.-Y, Chen Y.-C. J. Am. Chem. Soc. 2015; 137: 9390
- 6b Hajra S, Aziz SkM, Jana B, Mahish P, Das D. Org. Lett. 2016; 18: 532
- 6c Filatov AS, Knyazev NA, Molchanov AP, Panikorovsky TL, Kostikov RR, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2017; 82: 959
- 6d Jiang S, Guo H.-M, Yao S, Shi D.-Q, Xiao W.-J. J. Org. Chem. 2017; 82: 10433
- 6e Zhao J.-Q, Zhou X.-J, Zhou Y, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2018; 20: 909
- 7a Evans DA, Johnson JS. J. Am. Chem. Soc. 1998; 120: 4895
- 7b Evans DA, Johnson JS, Burgey CS, Campos KR. Tetrahedron Lett. 1999; 40: 2879
- 7c Evans DA, Johnson JS, Olhava EJ. J. Am. Chem. Soc. 2000; 122: 1635
- 7d Pei C.-K, Jiang Y, Wei Y, Shi M. Angew. Chem. Int. Ed. 2012; 51: 11328
- 7e Sinha D, Perera S, Zhao JC.-G. Chem. Eur. J. 2013; 19: 6976
- 7f Weise CF, Lauridsen VH, Rambo RS, Iversen EH, Olsen M.-L, Jørgensen KA. J. Org. Chem. 2014; 79: 3537
- 7g Kowalczyk D, Albrecht L. J. Org. Chem. 2016; 81: 6800
- 7h Li Y, He CQ, Gao F.-X, Li Z, Xue X.-S, Li X, Houk KN, Cheng J.-P. Org. Lett. 2017; 19: 1926
- 8a Evans DA, Scheidt KA, Fandrick KR, Lam HW, Wu J. J. Am. Chem. Soc. 2003; 125: 10780
- 8b Evans DA, Fandrick KR, Song H.-J, Scheidt KA, Xu R. J. Am. Chem. Soc. 2007; 129: 10029
- 8c Bachu P, Akiyama T. Chem. Commun. 2010; 46: 4112
- 8d Jiang H, Paixão MW, Monge D, Jørgensen KA. J. Am. Chem. Soc. 2010; 132: 2775
- 8e Liu T, Wang Y, Wu G, Song H, Zhou Z, Tang C. J. Org. Chem. 2011; 76: 4119
- 8f Ma H.-L, Xie L, Zhang Z, Li J.-Q, Qin Z.-H, Fu B. Adv. Synth. Catal. 2016; 358: 1011
- 9a Chen L, Zhang M.-L, Zhao J.-Q, Zuo J, Zhang X.-M, Yuan W.-C, Xu X.-Y. Org. Biomol. Chem. 2015; 13: 4413
- 9b Chen L, Wu Z.-J, Zhang M.-L, Yue D.-F, Zhang X.-M, Xu X.-Y, Yuan W.-C. J. Org. Chem. 2015; 80: 12668
- 10a Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 10b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 10c Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
- 10d Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 10e Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
- 10f Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
- 11a Zhu G, Wang B, Bao X, Zhang H, Wei Q, Qu J. Chem. Commun. 2015; 51: 15510
- 11b Wei Q, Zhu G, Zhang H, Qu J, Wang B. Eur. J. Org. Chem. 2016; 5335
- 11c Zhu G, Liu S, Wu S, Peng L, Qu J, Wang B. J. Org. Chem. 2017; 82: 4317
- 11d Zhu G, Wei Q, Chen H, Zhang Y, Shen W, Qu J, Wang B. Org. Lett. 2017; 19: 1862
- 11e Zhu G, Wu S, Bao X, Cui L, Zhang Y, Qu J, Chen H, Wang B. Chem. Commun. 2017; 53: 4714
- 12 Chen W.-B, Wu Z.-J, Hu J, Cun L.-F, Zhang X.-M, Yuan W.-C. Org. Lett. 2011; 13: 2472
- 13 CCDC 1839388 (compound 4m) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. See also the Supporting Information for details.
- 14a Pappenfus TM, Melby JH, Hansen BB, Sumption DM, Hubers SA, Janzen DE, Ewbank PC, McGee KA, Burand MW, Mann KR. Org. Lett. 2007; 9: 3721
- 14b Alam M, Goodyear A, Scott JP, Vickery TP. Org. Process Res. Dev. 2011; 15: 443
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see: