Subscribe to RSS
DOI: 10.1055/s-0037-1611658
Advancements in Visible-Light-Enabled Radical C(sp)2–H Alkylation of (Hetero)arenes
The authors acknowledge the financial support for this work from the NIH NIGMS (R01-GM127774) and the University of Michigan. This work is supported by an NSF Graduate Research Fellowship for A.C.S. and R.C.M. (grant DGE 1256260).Publication History
Received: 18 December 2018
Accepted: 20 December 2018
Publication Date:
25 January 2019 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
The Minisci reaction, which encompasses the radical C–H alkylation of heteroarenes, has undergone revolutionary development in recent years. The application of photoredox catalysis to alkyl radical generation has given rise to a multitude of methods that feature enhanced functional group tolerance, generality, and operational simplicity. The intent of this short review is to bring readers up to date on this rapidly expanding field. Specifically, we will highlight key examples of visible-light-driven Minisci alkylation strategies that represent key advancements in this area of research. The scope and limitations of these transformations will be discussed, with a focus on examining the underlying pathways for alkyl radical generation. Our goal is to make this short review a stepping stone for further synthetic research development. Sections are organized based on alkyl radical precursor reagents.
1 Introduction
2 Alkyl Carboxylic Acids and Carboxylic Acid Derivatives
3 Alkylboronic Acids
4 Potassium Alkyl- and Alkoxymethyltrifluoroborates
5 Alkyl Halides
6 Alcohols and Ethers
7 Conclusion
-
References
- 1 Pozharskii AF, Soldatenkov AT, Katritzky AR. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry, and Applications. John Wiley & Sons; Chichester: 2011
- 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 3 Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
- 4 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 5 Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
- 6 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
- 7 Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
- 8 Minisci F, Citterio A, Vismara E, Giordano C. Tetrahedron 1985; 41: 4157
- 9 Punta C, Minisci F. Trends Heterocycl. Chem. 2008; 13: 1
- 10 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
- 11 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 12 Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature (London) 2012; 492: 95
- 13 Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
- 14 O’Hara F, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2013; 135: 12122
- 15 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 16 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 17 Schultz DM, Yoon TP. Science 2014; 343: 985 ; DOI: 10.1126/science.1239176
- 18 Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 19 Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
- 20 Yayla HG, Peng F, Mangion IK, McLaughlin M, Campeau L.-C, Davies IW, DiRocco DA, Knowles RR. Chem. Sci. 2016; 7: 2066
- 21 Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A. Org. Process Res. Dev. 2014; 18: 417
- 22 Li Y, Ge L, Muhammad MT, Bao H. Synthesis 2017; 49: 5263
- 23 Liu P, Zhang G, Sun P. Org. Biomol. Chem. 2016; 14: 10763
- 24 Beatty JW, Douglas JJ, Cole KP, Stephenson CR. J. Nat. Commun. 2015; 6: 7919
- 25 Barton DH. R, Crich D, Motherwell WB. J. Chem. Soc., Chem. Commun. 1983; 939
- 26 Barton DH. R, Lacher BL, Zard SZ. Tetrahedron 1986; 42: 2325
- 27 Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
- 28 Cheng W.-M, Shang R, Fu Y. ACS Catal. 2017; 7: 907
- 29 Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
- 30 Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
- 31 Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org. Lett. 2018; 20: 6298
- 32 Sherwood TC, Li N, Yazdani AN, Dhar TG. M. J. Org. Chem. 2018; 83: 3000
- 33 Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CR. J. Chem 2016; 1: 456
- 34 McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
- 35 Sun AC, McClain EJ, Beatty JW, Stephenson CR. J. Org. Lett. 2018; 20: 3487
- 36 DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
- 37 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
- 38 Garza-Sanchez RA, Tlaheuxt-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
- 39 Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
- 40 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 41 Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
- 42 Darmency V, Renaud P. Radicals in Synthesis I . In Topics in Current Chemistry, Vol. 263. Gansäuer A. Springer; Heidelberg: 2006
- 43 Vogler T, Studer A. Org. Lett. 2008; 10: 129
- 44 Pouliot M, Renaud P, Schenk K, Studer A, Vogler T. Angew. Chem. Int. Ed. 2009; 48: 6037
- 45 Koike T, Akita M. Org. Biomol. Chem. 2016; 14: 6886
- 46 Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
- 47 Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 48 Li G.-X, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G. Chem. Sci. 2016; 7: 6407
- 49 Sorin G, Martinez Mallorquin R, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
- 50 Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
- 51 Presset M, Fleury-Brégeot N, Oehlrich D, Rombouts F, Molander GA. J. Org. Chem. 2013; 78: 4615
- 52 Matsui JK, Primer DN, Molander GA. Chem. Sci. 2017; 8: 3512
- 53 Kuivila HG. Synthesis 1970; 499
- 54 Tucker JW, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Org. Lett. 2010; 12: 368
- 55 Furst L, Matsuura BS, Narayanam JM. R, Tucker JW, Stephenson CR. J. Org. Lett. 2010; 12: 3104
- 56 Swift EC, Williams TM, Stephenson CR. J. Synlett 2016; 27: 754
- 57 Bissonnette NB, Boyd MJ, May GD, Giroux S, Nuhant P. J. Org. Chem. 2018; 83: 10933
- 58 Dong J, Lyu X, Wang Z, Wang X, Song H, Liu Y, Wang Q. Chem. Sci. 2018;
- 59 Devery JJ, Nguyen JD, Dai C, Stephenson CR. J. ACS Catal. 2016; 6: 5962
- 60 Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
- 61 Nagib DA, MacMillan DW. C. Nature (London) 2011; 480: 224
- 62 Choi WJ, Choi S, Ohkubo K, Fukuzumi S, Cho EJ, You Y. Chem. Sci. 2015; 6: 1454
- 63 Kaldas SJ, Cannillo A, McCallum T, Barriault L. Org. Lett. 2015; 17: 2864
- 64 McCallum T, Barriault L. Chem. Sci. 2016; 7: 4754
- 65 Nuhant P, Oderinde MS, Genovino J, Juneau A, Gagné Y, Allais C, Chinigo GM, Choi C, Sach NW, Bernier L, Fobian YM, Bundesmann MW, Khunte B, Frenette M, Fadeyi OO. Angew. Chem. Int. Ed. 2017; 56: 15309
- 66 Sloan KB, Bodor N. Int. J. Pharm. 1982; 12: 299
- 67 Jin J, MacMillan DW. C. Nature (London) 2015; 525: 87
- 68 Huff CA, Cohen RD, Dykstra KD, Streckfuss E, DiRocco DA, Krska SW. J. Org. Chem. 2016; 81: 6980
- 69 Liu W, Yang X, Zhou Z.-Z, Li C.-J. Chem 2017; 2: 688
- 70 McCallum T, Pitre SP, Morin M, Scaiano JC, Barriault L. Chem. Sci. 2017; 8: 7412
- 71 Jin J, MacMillan DW. C. Angew. Chem. Int. Ed. 2014; 54: 1565
- 72 Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Chem. Commun. 2017; 53: 2335
- 73 Bosset C, Beucher H, Bretel G, Pasquier E, Queguiner L, Henry C, Vos A, Edwards JP, Meerpoel L, Berthelot D. Org. Lett. 2018; 20: 6003
- 74 Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668