Subscribe to RSS
DOI: 10.1055/s-0037-1611779
FR901483: Synthetic Efficiency Remains a Challenge
Financial support from the National Natural Science Foundation of China (21672246 to R.H.), the Collaborative Innovation Program of Shanghai Institute of Technology (XTCX2015-16 to S.S.H.), and the Key Research Program of Frontier Sciences (QYZDY-SSWSLH026) and the Strategic Priority Research Program (XDB20020000 to R.H.) of the Chinese Academy of Sciences is greatly appreciated.Publication History
Received: 08 February 2019
Accepted after revision: 05 March 2019
Publication Date:
24 April 2019 (online)
Abstract
FR901483 is a unique alkaloid bearing an aza-tricyclic structure, a phosphate group, and a congested tertiary nitrogen center. This alkaloid was reported to be a potent immunosuppressant with antimetabolite ability. The unprecedented architecture has captured imagination of synthetic chemists since its isolation in 1996. To date, ten total or formal syntheses and several synthetic approaches to access the tricyclic core skeleton have been reported. In this review, we highlight the novel synthetic methods and strategies and discuss the synthetic challenge for meeting the criteria of drug development.
1 Introduction
2 Bioinspired Total Synthesis of FR901483
3 Non-bioinspired Approaches toward FR901483
4 Various Tactics for Accessing the Core Skeleton
5 Challenges for Efficiency
-
References
- 1 Medicines in Development for Autoimmune Diseases 2016 Report. PhRMA; Washington D. C.: 2016
- 2a Marrack P, Kappler J, Kotzin BL. Nat. Med. 2001; 7: 899
- 2b Davidson A, Diamond B. N. Engl. J. Med. 2001; 345: 340
- 2c Goodnow CC. Cell 2007; 130: 25
- 2d Degn SE, van der Poel CE, Firl DJ, Ayoglu B, Al Qureshah FA, Bajic G, Mesin L, Reynaud CA, Weill JC, Utz PJ, Victora GD, Carroll MC. Cell 2017; 170: 913
- 2e Hou S, Fölsch H, Ke K, Cook-Mills J, Ramsey-Goldman R, Zhao M. Proc. Natl. Acad. Sci. U.S. A. 2017; 114: 13798
- 2f Westhorpe CL. V, Norman MU, Hall P, Snelgrove SL, Finsterbusch M, Li A.-Q, Lo C, Tan Z.-H, Li S.-H, Nilsson SK, Kitching AR, Hickey MJ. Nat. Commun. 2018; 9: 747
- 2g Bloch Y, Bouchareychas L, Merceron R, Skladanowska K, Van den Bossche L, Detry S, Govindarajan S, Elewaut D, Haerynck F, Dullaers M, Adamopoulos IE, Savvides SN. Immunity 2018; 48: 45
- 3a Suthanthiran M, Morris RE, Strom T. Am. J. Kidney Dis. 1996; 28: 159
- 3b Halloran PF. N. Engl. J. Med. 2004; 351: 2715
- 4a Cyclosporine A: Petcher TJ, Weber H.-P, Rüegger A. Helv. Chim. Acta 1976; 59: 1480
- 4b FK506: Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H. J. Antibiot. 1987; 40: 1249
- 4c Rapamycin: Sehgal SN, Baker H, Vézina C. J. Antibiot. 1975; 28: 727
- 4d Mycophenolate mofetil: Sievers M, Rossi SJ, Ghobrial RM, Arriola E, Nishimura P, Kawano M, Holt CD. Pharmacotherapy 1997; 17: 1178
- 5a Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, Arndorfer J, Christensen L, Merion RM. N. Engl. J. Med. 2003; 349: 931
- 5b Jardine AG, Fellström B, Logan JO, Cole E, Nyberg G, Grönhagen-Riska C, Madsen S, Neumayer HH, Maes B, Ambühl P, Olsson AG, Pedersen T, Holdaas H. Am. J. Kidney Dis. 2005; 46: 529
- 6a Mann J. Nat. Prod. Rep. 2001; 18: 417
- 6b Newman DJ, Cragg GM. J. Nat. Prod. 2012; 75: 311
- 6c Butler M, Robertson AA. B, Cooper MA. Nat. Prod. Rep. 2014; 31: 1612
- 7 Keating R, Hertz T, Wehenkel M, Harris TL, Edwards BA, McClaren JL, Brown SA, Surman S, Wilson ZS, Bradley P, Hurwitz J, Chi HB, Doherty PC, Thomas PG, McGargill MA. Nat. Immunol. 2013; 14: 1266
- 8 For a review, see: Blagosklonny MV. Oncoimmunology 2013; 2: 26961 ; and references cited therein
- 9 Sakamoto K, Tsujii E, Abe F, Nakanishi T, Yamashitat M, Shigematsu N, Izumi S, Okuhara M. J. Antibiot. 1996; 49: 37
- 10 Snider BB, Lin H. J. Am. Chem. Soc. 1999; 121: 7778
- 11 Bonjoch J, Diaba F, Puigbó G, Solé D, Segarra V, Santamaría L, Beleta J, Ryder H, Palacios JM. Bioorg. Med. Chem. 1999; 7: 2891
- 12 For previous review on the total syntheses and construction of the core structure of FR90483, see: Bonjoch J, Diaba F. Synthesis of Immunosuppressant FR901483 and Biogenetically Related TAN1251 Alkaloids. In Studies in Natural Products Chemistry, Vol. 32, Part L. Atta-ur-Rahman, Elsevier; London: 2005. 3–60
- 13a Schimid M, Trauner D. Angew. Chem. Int. Ed. 2017; 56: 12332
- 13b Newton CG, Tran DN, Wodrich MD, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 13776
- 14 Snider BB, Lin H, Foxman BM. J. Org. Chem. 1998; 63: 6442
- 15 Shirafuji H, Tsubotani S, Ishimaru T, Harada S. WO 9113887, 1999
- 16 A focused review on the biomimetic approach toward FR901483, see: Liang H, Ciufolini MA. Biomimetic Synthesis of Alkaloids Derived from Tyrosine: The Case of FR-901483 and TAN-1251 Compounds. In Biomimetic Organic Synthesis, Vol. 1. Poupon E, Nay B. Wiley-VCH; Weinheim: 2011. Chap. 2, 61-89
- 17 Grundke G, Keese W, Rimpler M. Synthesis 1987; 1115
- 18 García-Urdiales E, Alfonso I, Gotor V. Chem. Rev. 2005; Enzymatic aldol-type desymmetrization for other substrates was known and applied in the syntheses of chiral intermediates as well as natural products, see: 105: 313
- 19 A recent review summarizes several oxidative cyclization strategies in biosynthesis, see: Tang M.-C, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
- 20 Scheffler G, Seike H, Sorensen EJ. Angew. Chem. Int. Ed. 2000; 39: 4593
- 21a Braun NA, Ousmer M, Bray JD, Bouchu D, Peters K, Peters E.-M, Ciufolini MA. J. Org. Chem. 2000; 65: 4397
- 21b Tamura Y, Yakura T, Haruta JI, Kita Y. J. Org. Chem. 1987; 52: 3927
- 21c Kita Y, Yakura T, Tohma H, Kikuchi K, Tamura Y. Tetrahedron Lett. 1989; 30: 1119
- 21d Kita Y, Tohma H, Kikuchi K, Inagaki M, Yakura T. J. Org. Chem. 1991; 56: 435
- 22a Ousmer M, Braun NA, Ciufolini MA. Org. Lett. 2001; 3: 765
- 22b Ousmer M, Braun NA, Bavoux C, Perrin M, Ciufolini MA. J. Am. Chem. Soc. 2001; 123: 7534
- 23 Maeng JH, Funk RL. Org. Lett. 2001; 3: 1125
- 24a Funk RL, Bolton GL. J. Am. Chem. Soc. 1988; 110: 1290
- 24b Funk RL, Bolton GL. Tetrahedron Lett. 1988; 29: 1111
- 24c Yost KJ, Funk RL. J. Org. Chem. 1996; 61: 2598
- 25 To deliver the requisite stereoisomer in the reduction step, here we coined as ‘stereoconfined reduction’ to differentiate from other terms like ‘stereoselective’ which does not refer a confined stereochemistry. See a recent discussion: Zheng K, Hong R. Nat. Prod. Rep. 2019; 36: in press; DOI: 10.1039/c8np00094h
- 26 Kan T, Fujimoto T, Ieda S, Asoh Y, Kitaoka H, Fukuyama T. Org. Lett. 2004; 6: 2729
- 27 Ieda S, Asoh Y, Fujimoto T, Kitaoka H, Kan T, Fukuyama T. Heterocycles 2009; 79: 721
- 28 Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3393
- 29a Ieda S, Kan T, Fukuyama T. Tetrahedron Lett. 2010; 51: 4027
- 29b Ieda S, Masuda A, Kariyama M, Wakimoto T, Asakawa T, Fukuyama T, Kan T. Heterocycles 2012; 86: 1071
- 30a Lu JL, Brummond KM. Org. Lett. 2001; 3: 1347
- 30b Hong S, Brummond KM. J. Org. Chem. 2005; 70: 907
- 31a Overman LE, Ricca DJ. The Intramolecular Mannich and Related Reactions. In Comprehensive Organic Synthesis, Vol. 2. Trost BM, Fleming I. Pergamon; Oxford: 1991. Chap. 4.4, 1007
- 31b Overman LE. Acc. Chem. Res. 1992; 25: 352
- 31c Overman LE, Kakimoto M.-a, Okazaki ME, Meier GP. J. Am. Chem. Soc. 1983; 105: 6622
- 31d Overman LE, Humphreys PG, Wellmaker GS. The Aza-Cope/Mannich Reaction. In Organic Reactions, Vol. 75. Wiley; Hoboken: 2011. Chap. 4, 747-820
- 32 Carson CA, Kerr MA. Org. Lett. 2009; 11: 777
- 33a Cain CM, Cousins RP. C, Coumbarides G, Simpkins NS. Tetrahedron 1990; 46: 523
- 33b Simpkins NS, Weller MD. Org. React. 2012; 79: 1
- 34a Young IS, Williams JL, Kerr MA. Org. Lett. 2005; 7: 953
- 34b Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
- 34c Jackson SK, Karadeolian A, Driega AB, Kerr MA. J. Am. Chem. Soc. 2008; 130: 4196
- 34d Kang Y.-B, Tang Y, Sun X.-L. Org. Biomol. Chem. 2006; 4: 299
- 34e Kerr MA. Isr. J. Chem. 2016; 56: 476
- 35a Krapcho AP, Glynn GA, Grenon BJ. Tetrahedron Lett. 1967; 8: 215
- 35b Krapcho AP, Ciganek E. Org. React. 2013; 81: 1
- 36 Ma A.-J, Tu Y.-Q, Peng J.-B, Dou Q.-Y, Hou S.-H, Zhang F.-M, Wang S.-H. Org. Lett. 2012; 14: 3604
- 37 Goddard-Borger ED, Stick RV. Org. Lett. 2007; 9: 3797
- 38 Trost BM, Scudder PH. J. Am. Chem. Soc. 1977; 99: 7601
- 39a Wang B.-M, Tu Y.-Q. Acc. Chem. Res. 2011; 44: 1207
- 39b Song Z.-L, Fan C.-A, Tu Y.-Q. Chem. Rev. 2011; 111: 7523
- 39c Zhang X.-M, Tu Y.-Q, Zhang F.-M, Chen Z.-H, Wang S.-H. Chem. Soc. Rev. 2017; 46: 2272
- 40 Wrobleski A, Coombs TC, Huh CW, Li S.-W, Aubé J. Org. React. 2011; 78: 1
- 41a Huo H.-H, Zhang H.-K, Xia X.-E, Huang P.-Q. Org. Lett. 2012; 14: 4834
- 41b Huo H.-H, Xia X.-E, Zhang H.-K, Huang P.-Q. J. Org. Chem. 2013; 78: 455
- 42a Fu R, Du Y, Li Z.-Y, Xu W.-X, Huang P.-Q. Tetrahedron 2009; 65: 9765
- 42b Fu R, Ye J.-L, Dai X.-J, Ruan Y.-P, Huang P.-Q. J. Org. Chem. 2010; 75: 4230
- 42c Yang R.-F, Huang P.-Q. Chem.–Eur. J. 2010; 16: 10319
- 42d Tuo S.-C, Ye J.-L, Wang A.-E, Huang S.-Y, Huang P.-Q. Org. Lett. 2011; 13: 5270
- 42e Zhang H.-K, Li X, Huang H, Huang P.-Q. Sci. China Chem. 2011; 54: 737
- 43a Xiao K.-J, Luo J.-M, Ye K.-Y, Wang Y, Huang P.-Q. Angew. Chem. Int. Ed. 2010; 49: 3037
- 43b Huang P.-Q. Acta Chim. Sin. 2018; 76: 357
- 44 Wardrop DJ, Zhang WM. Org. Lett. 2001; 3: 2053
- 45a Bonjoch J, Diaba F, Puigbo G, Peidro E, Sole D. Tetrahedron Lett. 2003; 44: 8387
- 45b Diaba F, Ricou E, Solé D, Teixidó E, Valls N, Bonjoch J. ARKIVOC 2007; (iv): 320
- 46 Asari A, Angelow P, Auty JM, Hayes CJ. Tetrahedron Lett. 2007; 48: 2631
- 47 Diaba F, Martínez-Laporta A, Bonjoch J. J. Org. Chem 2014; 79: 9365
- 48a Simila ST. M, Reichelt A, Martin SF. Tetrahedron Lett. 2006; 47: 2933
- 48b Simila ST. M, Martin SF. J. Org. Chem. 2007; 72: 5342
- 49 Seike H, Sorensen EJ. Synlett 2008; 695
- 50 Li B.-L, Gao W.-Y, Li H, Zhang S.-Q, Han X.-Q, Lu J, Liang R.-X, Hong X, Jia Y.-X. Chin. J. Chem. 2019; 37: 63
- 51a Yamazaki N, Suzuki H, Kibayashi C. J. Org. Chem. 1997; 62: 8280
- 51b Mak JY. W, Pouwer RH, Williams CM. Angew. Chem. Int. Ed. 2014; 53: 13664
- 52 Suzuki H, Yamazaki N, Kibayashi C. Tetrahedron Lett. 2001; 42: 3013
- 53 Kropf JE, Meigh IC, Bebbington MW. P, Weinreb SM. J. Org. Chem. 2006; 71: 2046
- 54 Kaden S, Reissig HU. Org. Lett. 2006; 8: 4763
- 55 Perreault S, Rovis T. Synthesis 2013; 45: 719
- 56a Friedman RK, Rovis T. J. Am. Chem. Soc. 2009; 131: 10775
- 56b Oinen ME, Yu RT, Rovis T. Org. Lett. 2009; 11: 4934
- 56c Dalton DM, Rovis T. Org. Lett. 2013; 15: 2346
- 56d Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
- 56e Keller-Friedman R, Oberg KM, Dalton DM, Rovis T. Pure Appl. Chem. 2010; 82: 1353
- 57 Efficiency in Natural Product Total Synthesis. Huang P.-Q, Yao Z.-J, Hsung RP. Wiley-VCH; Weinheim: 2018
- 58 Kuttruff CA, Eastgate MD, Baran PS. Nat. Prod. Rep. 2014; 31: 419
- 59 Bauer A, Brönstrup M. Nat. Prod. Rep. 2014; 31: 35
- 60a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 60b Over B, Wetzel S, Grütter C, Nakai Y, Renner S, Rauh D, Waldmann H. Nat. Chem. 2013; 5: 21
- 60c Lawson AD. G, MacCoss M, Heer JP. J. Med. Chem. 2018; 61: 4283
- 60d Davison EK, Brimble MA. Curr. Opin. Chem. Biol. 2019; 52: 1
- 61 Other case likes peduncularine, receiving no medicinal studies even though the total synthesis has been accessed many times in the past two decades. See a recent review: Zhang Y, Tian X, Zhang Y, Huang S.-H, Hong R. Chin. J. Org. Chem. 2019; 39: 47
- 62a Stockdale TP, Williams CM. Chem. Soc. Rev. 2015; 44: 7737
- 62b Degorce SL, Bodnarchuk MS, Cumming IA, Scott JS. J. Med. Chem. 2018; 61: 8934
For recent research process on the mechanism of autoimmune diseases, see:
For reviews of immunosuppressants derived from natural products, see:
For a review of natural products and their derivatives undergoing clinical trials in immunological diseases, see:
Selected recent examples:
For pioneering work in oxidative dearomatization of phenolic amides with hypervalent-iodine oxidants, see:
For a comprehensive review of this topic, see:
For a comprehensive review on asymmetric deprotonation with lithium amides including desymmetrization, see:
For a recent review, see:
For a comprehensive review, see:
For applications of semipinacol rearrangement in natural product total synthesis, see:
For precious examples, see:
For a recent elegant highlight on this topic, see:
For a discussion on the anti-Bredt rule in natural products, see:
For reviews, see:
A very recent viewpoint on natural product-derived scaffolds in drug discovery, see:
A recent interesting case is worthy of mention, see: