Subscribe to RSS
DOI: 10.1055/s-0037-1611837
One-Pot Synthesis of Trifluoromethylated Pyrazol-4-yl-pyrrole-2,5-dione Derivatives
The authors thank the National Natural Science Foundation of China (No. 21272153), and the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry for financial support.Publication History
Received: 18 March 2019
Accepted after revision: 29 April 2019
Publication Date:
21 May 2019 (online)

Abstract
Efficient and convenient one-pot, three-component reactions of pyrrolidone, aromatic aldehydes and 1-phenyl-3-trifluoromethyl-5-pyrazolone afforded highly functionalized trifluoromethylated pyrazol-4-ylpyrrole-2,5-dione derivatives in good yields. The effect of solvents on the reaction efficiency and yield was briefly investigated. The structures of products were determined by spectral methods and X-ray diffraction analysis. The latter showed that the products formed have a strong intramolecular hydrogen bond, which made them particularly stable and the corresponding annulated products were not obtained by treatment with dehydrating reagents.
Key words
fluorinated heterocycles - multicomponent reactions - pyrrolidone - Michael addition - hydrogen bondSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611837.
- Supporting Information
-
References
- 1a Zeng YW, Hu JB. Synthesis 2016; 48: 2137
- 1b Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
- 1c Wang XY, Wang X, Wang JB. Tetrahedron 2019; 75: 949
- 1d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1e Wegert A, Miethchen R, Hein M, Reinke H. Synthesis 2005; 1850
- 1f Welch JT. Tetrahedron 1987; 43: 3123
- 2a Valero G, Companyo X, Rios R. Chem. Eur. J. 2011; 17: 2018
- 2b Cahard D, Bizet V. Chem. Soc. Rev. 2014; 43: 135
- 2c Hardy MA, Chachignon H, Cahard D. Asian J. Org. Chem. 2019; 8: in press; DOI: 10.1002/ajoc.201900004
- 2d Chen M, Yang Y, Ma JZ, Ouyang LP, Lu T, Wang HY, Meng FH, Ning CQ, Liu XY. ACS Appl. Mater. Inter. 2017; 9: 16824
- 2e Jeschke P. ChemBioChem 2004; 5: 570
- 2f Marsh EN. G, Suzuki Y. ACS Chem. Biol. 2014; 9: 1242
- 2g Pretze M, Pietzsch D, Mamat C. Molecules 2013; 18: 8618
- 3a Harthong S, Billard T, Langlois BR. Synthesis 2005; 2253
- 3b Smart BE. J. Fluorine Chem. 2001; 109: 3
- 3c Dolbier WR. J. Fluorine Chem. 2005; 126: 157
- 3d Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
- 3e Iwai N, Sakai R, Tsuchida S, Kitazume M, Kitazume T. J. Fluorine Chem. 2009; 130: 434
- 3f Gietter-Burch A, Devannah V, Watson DA. Org. Lett. 2017; 19: 2957
- 4a Fuchibe K, Oki R, Hatta H, Ichikawa J. Chem. Eur. J. 2018; 24: 17932
- 4b Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 4c Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 5 Hardy MA, Chachignon H, Cahard D. Asian J. Org. Chem. 2019; 8: 1
- 6a Kong WQ, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
- 6b Zhang CP, Wang ZL, Chen QY, Zhang CT, Gu YC, Xiao JC. Angew. Chem. Int. Ed. 2011; 50: 1896
- 6c Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
- 6d Xiong YP, Wu MY, Zhang XY, Ma CL, Huang L, Zhao LJ, Tan B, Liu XY. Org. Lett. 2014; 16: 1000
- 6e Niedermann K, Welch JM, Koller R, Cvengros J, Santschi N, Battaglia P, Togni A. Tetrahedron 2010; 66: 5753
- 6f Huang YY, Yang X, Chen Z, Verpoort F, Shibata N. Chem. Eur. J. 2015; 21: 8664
- 7 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 8 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 9a Suresh BA, Raghunathan R. Tetrahedron Lett. 2006; 47: 9221
- 9b Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew Chem. 1959; 71: 386
- 9c Passerini M. Chim. Ital. 1921; 51: 126
- 9d Van Leusen D, Van Leusen AM. Org. React. (N. Y.) 2003; 57: 419
- 9e Strecker A. Ann. Chem. Pharm. 1854; 91: 349
- 9f Hantzsch A. Ber. Dtsch. Chem. Ges. 1881; 14: 1637
- 9g Biginelli P. Ber. Dtsch. Chem. Ges. 1891; 24: 1317
- 10 Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 11a Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
- 11b Jiang B, Rajale T, Wever W, Tu SJ, Li G. Chem. Eur. J. 2010; 5: 2318
- 11c Gao M, He C, Chen HY, Bai RP, Cheng B, Lei AW. Angew. Chem. Int. Ed. 2013; 52: 6958
- 11d Yang S, Wang J, Huo SQ, Cheng LF, Wang M. Polym. Degrad. Stab. 2015; 119: 251
- 11e Yoshida H, Takaki K. Heterocycles 2012; 85: 1333
- 11f Braunschweig H, Constantinidis P, Dellermann T, Ewing WC, Fischer I, Hess M, Knight FR, Rempel A, Schneider C, Ullrich S. Angew. Chem. Int. Ed. 2016; 55: 5606
- 11g Du HY, Rodriguez J, Bugaut X, Constantieux T. Synthesis 2015; 47: 2188
- 12a Mudasir M, Mohammad M, Nasimul H. Eur. J. Med. Chem. 2016; 107: 63
- 12b Khan I, Tantray MA, Alam MS, Hamid H. Eur. J. Med. Chem. 2017; 125: 464
- 12c Robertson H, Hayes JD, Sutherland C. Biochem. Pharmacol. 2018; 147: 77
- 12d Durantini AM, Heredia DA, Durantini JE, Durantini EN. Eur. J. Med. Chem. 2018; 144: 651
- 12e Patel J, Malani M, Andrei G, Balzarini J, Snoeck R, Dholakiya B. Anti-Infective Agents 2014; 12: 104
- 13a Shi W, Wang Y, Zhu YJ, Zhang M, Song LP, Deng HM. Synthesis 2016; 48: 3527
- 13b Wang X, Kang ZP, Yang XY, Zhang M, Song LP, Deng HM. Synthesis 2015; 47: 2073
- 13c Zhou L, Yuan FC, Zhou YD, Duan WW, Zhang M, Deng HM, Song LP. Tetrahedron 2018; 74: 3761
- 13d Jiang YH, Xiao M, Yan CG. RSC Adv. 2016; 6: 35609
- 13e Chen ZP, Wang HB, Wang YQ, Zhu QH, Xie Y, Liu SW. Tetrahedron 2014; 70: 4379
- 13f Mashaly MM, El-Gogary SR, Kosbara TR. J. Heterocycl. Chem. 2014; 51: 1078
- 14 CCDC 1902835 (4a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.