Thromb Haemost 1999; 81(03): 325-337
DOI: 10.1055/s-0037-1614472
Review Article
Schattauer GmbH

The Clearance of Thrombin-antithrombin and Related Serpin-enzyme Complexes from the Circulation: Role of Various Hepatocyte Receptors

Michael J. Wells
1   From the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
,
William P. Sheffield
1   From the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
2   Canadian Blood Services, Hamilton, Ontario, Canada
,
Morris A. Blajchman
1   From the Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
2   Canadian Blood Services, Hamilton, Ontario, Canada
› Author Affiliations
Further Information

Publication History

Received26 August 1998

Accepted after revision09 November 1998

Publication Date:
09 December 2017 (online)

Introduction

Peptide bond cleavage can herald the end of a protein’s active life, or its transformation from an inactive precursor to an active enzyme. If the newly activated protein is a proteinase, even a highly specific proteinase, then its activity must be regulated in order that unbridled cleavage and damage to the host organism do not ensue. Such regulation for many of the key serine proteinases of the coagulation, fibrinolytic, complement, and inflammatory pathways is provided by the inhibitory proteins of the serpin family.

The serpins are a large family of over 100 proteins (1). Many are plasma proteins such as antithrombin (AT), α1-proteinase inhibitor (α-PI), α1-antichymotrypsin (α-AC), heparin cofactor II (HCII), plasminogen activator inhibitors (PAI) I and II, α2-antiplasmin (α2-AP) and proteinase nexin I (PN-1). While some serpins are readily recognizable as family members, solely by virtue of homology, others have been characterized in detail, particularly those that are suicide inhibitors of their cognate proteinases; enzymes that recognize and attack the reactive centre loop of the inhibitory serpins. The resulting serpin-enzyme complex (SEC) is comprised of the inhibitor, which is irreversibly inactivated by virtue of the cleavage of its reactive centre peptide bond, and the enzyme, which is reversibly inactivated by the formation of an acyl ester linkage between its active site serine and a serpin side chain. Thus, a stable, covalent, and stoichiometric complex resistant to denaturation is formed (2, 3).

The reversible nature of the proteinase’s inactivation in the SEC means that while substantial regulation of the proteinase has been achieved, the organism has only prolonged the inevitable by forming the SEC. Because the SEC is only kinetically but not thermodynamically stable, given sufficient time it will break down, releasing cleaved serpin and active enzyme (4, 5). To prevent this, receptor-mediated mechanisms have evolved to effectively remove SECs from the circulation. Since the initial studies of Ohlsson, who investigated the clearance of α-PI-trypsin complexes in the circulation of dogs (6, 7), a large body of evidence has accumulated to indicate that SECs are cleared from the circulation more rapidly than their constituent serpins. This accelerated clearance seals the fate of the serpin-complexed proteinases, and prevents their release from SECs by sequestering the SECs inside cells, where they are catabolized. In this article, we review the available data with respect to the mechanisms involved in SEC removal from the circulation. Specifically, we address those proteins or molecules that have been reported to act as cellular receptors for SEC removal, and propose a model for SEC removal which includes several of the available candidate receptors. Where possible, we have focussed on the thrombin-antithrombin (TAT) complex, both because of our laboratory’s longstanding interest in antithrombin, and because of thrombin’s key role in haemostasis and thrombosis (8).

 
  • References

  • 1 Gettins PGW, Patston PA, Olson ST. Serpins: Structure, function and molecular biology. Chapman and Hall; New York: 1996: pp. 1-14.
  • 2 Olson ST, Bock PE, Kvassman J, Shore JD, Lawrence DA, Ginsburg D, Bjork I. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. J Biol Chem 1995; 270: 30007-17.
  • 3 Lawrence DA, Ginsburg D, Day DE, Berkenpas MB, Verhamme IM, Kavssman J, Shore JD. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem 1995; 270: 25309-12.
  • 4 Gettins PGW, Patston PA, Olson ST. Serpins: Structure, function and molecular biology. Chapman and Hall; New York: 1996: pp. 48-9.
  • 5 Danielsson A, Bjork I. Properties of the antithrombin-thrombin complex formed in the presence and in the absence of heparin. Biochem J 1983; 213: 345-53.
  • 6 Ohlsson K. Interactions in vitro and in vivo between dog trypsin and dog plasma proteinase inhibitors. J Clin Lab Invest 1971; 28: 219-23.
  • 7 Ohlsson K, Ganrot PO, Laurell CB. In vivo interaction between trypsin and some plasma proteins in relation to the tolerance to intravenous trypsin infusion in dog. Acta Chir Scand 1971; 137: 113-21.
  • 8 Fenton II JW, Ofosu FA, Brezniak DV, Hassouna I. H. Understanding thrombin and hemostasis. Hematol Oncol Clin N Am 1993; 7: 1107-19.
  • 9 Ohlsson K, Laurell CB. The disappearance of enzyme-inhibitor complexes from the circulation of man. Clin Sci Mol Med 1976; 51: 87-92.
  • 10 Collen D, Wiman B. Turnover of α2-antiplasmin and of the plasmin α2-antiplasmin complex. In Collen D, Wiman B, Verstraete M. (eds). The physiological inhibitors of coagulation and fibrinolysis. Elsevier/North Holland Biomedical Press; Amsterdam: 1979: pp. 171-6.
  • 11 Chandler WL, Alessi MC, Aillaud MF, Henderson MS, Vague P, Juhan-Vague I. Clearance of tissue plasminogen activator (TPA) and TPA/ Plasminogen activator inhibitor type 1 (PAI-1) complex. Circulation 1997; 96: 761-8.
  • 12 Fuchs HE, Shifman MA, Pizzo SV. In vivo catabolism of α1-proteinase inhibitor-trypsin, antithrombin III-thrombin, and α2-macroglobulinmethylamine. Biochim Biophys Acta 1982; 716: 151-7.
  • 13 Gonias SL, Fuchs SL, Pizzo SV. A unique pathway for the plasma elimination of α2-antiplasmin-proteinase complexes in mice. Thromb Haemost 1982; 48: 208-10.
  • 14 Shifman MA, Pizzo SV. The in vivo metabolism of antithrombin III and antithrombin III complexes. J Biol Chem 1982; 257: 3243-8.
  • 15 Pratt CW, Church FC, Pizzo SV. In vivo catabolism of heparin cofactor II and its complex with thrombin: Evidence for a common receptor-mediated clearance pathway for three serine proteinase inhibitors. Arch Biochem Biophys 1988; 262: 111-7.
  • 16 Pizzo SV, Mast AE, Feldman SR, Salvesen G. In vivo catabolism of α1-antichymotrypsin is mediated by the serpin receptor which binds α1-proteinase inhibitor, antithrombin III, and heparin cofactor II. Biochim Biophys Acta 1988; 967: 158-62.
  • 17 Pizzo SV. Serpin receptor 1: A hepatic receptor that mediates the clearance of antithrombin III-proteinase complexes. Am J Med 1990; 87: 10S-14S.
  • 18 Storm D, Herz J, Trinder P, Loos M. C1-inhibitor-C1s complexes are internalized and degraded by the low density lipoprotein receptor-related protein. J Biol Chem 1997; 272: 31043-50.
  • 19 Mast AE, Enghild JJ, Pizzo SV, Salvesen G. Analysis of the plasma elimination kinetics and conformational stabilities of the native, proteinase-complexed, and reactive site cleaved serpins: comparison of α1-proteinase inhibitor, α1-antichymotrypsin, antithrombin III, and α1-antiplasmin, angiotensinogen, and ovalbumin. Biochemistry 1991; 30: 1723-30.
  • 20 de Smet BJGL, de Boer J-P, Agterberg J, Rigter G, Bleeker WK, Hack CE. Clearance of human native, proteinase-complexed, and proteolytically inactivated C1-inhibitor in rats. Blood 1993; 81: 56-61.
  • 21 Malek R., Aulak KS, Davis AE. The catabolism of intact, reactive-centre cleaved and proteinase-complexed C1 inhibitor in the guinea pig. Clin Exp Immunol 1996; 105: 191-7.
  • 22 Wright HT, Scarsdale JN. Structural basis for serpin inhibitor activity. Proteins 1995; 22: 210-25.
  • 23 Bruch M, Weiss V, Engel J. Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J Biol Chem 1988; 263: 16626-30.
  • 24 Enghild JJ, Valnickova Z, Thogersen IB, Pizzo SV. Complexes between serpins and inactive proteinases are not thermodynamically stable but are recognized by serpin receptors. J Biol Chem 1994; 269: 20159-66.
  • 25 Olson ST, Swanson R, Patston PA, Bjork I. Apparent formation of sodium dodecyl sulfate- stable complexes between serpins and 3,4-dichloroisocoumarin-inactivated proteinases is due to regeneration of active proteinase from the inactivated enzyme. J Biol Chem 1997; 272: 13338-42.
  • 26 Xiong W, Tang CQ, Zhou GX, Chao L, Chao J. In vivo catabolism of human kallikrein- binding protein and its complex with tissue kallikrein. J Lab Clin Med 1991; 119: 514-21.
  • 27 Narita M, Rudolph AE, Miletich JP, Schwartz AL. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo. Blood 1998; 91: 555-60.
  • 28 Wells MJ, Blajchman MA. In vivo clearance of ternary complexes of vitronectin-thrombin-antithrombin is mediated by hepatic heparan sulfate proteoglycans. J Biol Chem 1998 273: 23440-7.
  • 29 Kounnas MZ, Church FC, Argraves WS, Strickland DK. Cellular internalization and degradation of antithrombin III-thrombin, heparin-cofactor II-thrombin, and α1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 1996; 271: 6523-9.
  • 30 Fair DS, Plow EF. Specific association of thrombin-antithrombin complexes with a human hepatoma cell line. Thromb Res 1986; 41: 67-78.
  • 31 Joslin G, Fallon RJ, Bullock J, Adams SP, Perlmutter DH. The SEC receptor recognizes a pentapeptide neodomain of α1-antitrypsinproteinase complexes. J Biol Chem 1991; 266: 11282-8.
  • 32 Joslin G, Wittwer A, Adams S, Tollefsen DM, August A, Perlmutter DH. Cro-competition for binding of α1-antitrypsin (α1-AT)-elastase complexes to the serpin-enzyme complex receptor by other serpin-enzyme complexes and by proteolytically modified α1-AT. J Biol Chem 1993; 268: 1886-93.
  • 33 Bauer I P, Mandl J, Machovich R, Antoni F, Garzo T, Horvath I. Specific binding of thrombin-antithrombin III complex to hepatocytes. Thromb Res 1982; 28: 595-606.
  • 34 Fuchs HE, Michalopolous AB, Pizzo SV. Hepatocyte uptake of α1-proteinase inhibitor-trypsin complexes in vitro: evidence for a shared uptake mechanism for proteinase complexes of α1-proteinase inhibitor and antithrombin III. J Cell Biochem 1984; 25: 231-43.
  • 35 Kovacs T, Kalapos P, Mandl J, Spolarics Z, Garzo T, Antoni F, Macho-vich R. Interaction of thrombin, antithrombin III and their complex with hepatocytes: Comparison of the molecular components of human and mouse origin. Thromb Res 1987; 46: 875-80.
  • 36 Spolarics Z, Kalapos MP, Lerant I, Garzo T, Antoni F, Mandl J, Macho-vich R. Association of thrombin, plasmin, thrombin-antithrombin III complex, and plasmin-antithrombin III complex with isolated hepatocytes. Biochim Biophys Acta 1989; 1012: 231-6.
  • 37 Takeya H, Hamada T, Kume M, Suzuki K. Receptor mediated endocytosis of thrombin-antithrombin III complex by the human monocytoid cell line U937. Biochem Biophys Res Commun 1994; 200: 1334-40.
  • 38 Savion N, Farzame N. Comparative study of antithrombin III-proteinase complex metabolism by fibroblasts and vascular endothelial cells. Thromb Res 1986; 41: 459-71.
  • 39 Knoller S, Savion N. Characterization of the cellular binding domain and the effects of monoclonal antibodies and thrombin inhibitors on the binding and internalization of the antithrombin III-thrombin complex by cultured cells. Eur J Biochem 1991; 195: 801-6.
  • 40 de Boer HC, Preissner KT, Bouma BN, de Groot PG. Binding of vitronectin-thrombin-antithrombin III complex to human endothelial cells is mediated by the heparin binding site of vitronectin. J Biol Chem 1992; 267: 2264-8.
  • 41 Perlmutter DH, Glover GI, Rivetna M, Schasteen CS, Fallon RJ. Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci. U.S.A 1990; 87: 3753-7.
  • 42 Banda MJ, Rice AG, Griffing GL, Senior RM. 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J Biol Chem 1988; 263: 4481-4.
  • 43 Banda MJ, Rice AG, Griffin GL, Senior RM. The inhibitory complex of human α1-proteinase inhibitor and human leukocyte elastase is a neutro-phil chemoattractant. J Exp Med 1988; 167: 1608-15.
  • 44 Perlmutter DH, Punsal I. P. Distinct and additive effects of elastase and endotoxin on expression of α1-proteinase inhibitor in mononuclear phagocytes. J Biol Chem 1988; 263: 16499-503.
  • 45 Perlmutter DH, Travis J, Punsal I. P. Elastase regulates the synthesis of its inhibitor, a1-proteinase inhibitor, and exaggerates the defect in homo-zygous PiZZ α1-PI deficiency. J Clin Invest 1988; 81: 1774-80.
  • 46 Joslin G, Griffin GL, August AM, Adams S, Fallon RJ, Senior RM, Perlmutter DH. The serpin-enzyme complex (SEC) receptor mediates the neutrophil chemotactic effect of α1-antitrypsin-elastase complexes and amyloid-β peptide. J Clin Invest 1992; 90: 1150-4.
  • 47 Schechter I, Berger A. On the size of the active site of proteases. Biochem Biophys Res Commun 1967; 27: 157-62.
  • 48 Perlmutter DH, Joslin G, Nelson P, Schasteen C, Adams SP, Fallon RJ. Endocytosis and degradation of α1-antitrypsin-proteinase complexes is mediated by the serpin-enzyme complex (SEC) receptor. J Biol Chem 1990; 265: 16713-6.
  • 49 Perlmutter DH. The SEC receptor: A possible link between neonatal hepatitis in α1-antitrypsin deficiency and Alzheimer’s disease. Ped Res 1994; 36: 271-7.
  • 50 Hoffman M, Fuchs HE, Pizzo SV. The macrophage-mediated regulation of hepatocyte synthesis of antithrombin III and α1-proteinase inhibitor. Thromb Res 1986; 41: 707-15.
  • 51 Patston PA, Medcalf RL, Kourteva Y, Schapira M. C1-inhibitor-serine proteinase complexes and the biosynthesis of C1-inhibitor by HepG2 and U 937 cells. Blood 1993; 82: 3371-9.
  • 52 Ziady A-G, Perales JC, Ferkol T, Gerken T, Beegen H, Perlmutter DH, Davis PB. Gene transfer into hepatoma cell line via the serpin enzyme complex receptor. Am J Physiol 1997; 273: G545-G552.
  • 53 Maekawa H, Tollefsen DM. Role of the proposed serpin-enzyme complex receptor recognition site in binding and internalization of thrombinheparin cofactor II complexes by hepatocytes. J Biol Chem 1996; 271: 18604-9.
  • 54 Olson D, Pollanen J, Hoyer-Hansen G, Ronne E, Sakaguchi K, Wun T-C, Appella E, Dano K, Blasi F. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem 1992; 267: 9129-33.
  • 55 Chen M, Conn K-J, Festoff BW. A receptor for cathepsin G: α1-antichymotrypsin complexes on mouse spinal cord astrocytes. Neurology 1993; 43: 1223-7.
  • 56 Conese M, Olson D, Blasi F. Proteinase nexin-1-urokinase complexes are internalized and degraded through a mechanism that requires both urokinase receptor and α2-macroglobulin receptor. J Biol Chem 1994; 269: 17886-92.
  • 57 Wells MJ, Hatton MWC, Hewlett B, Podor TJ, Sheffield WP, Blajchman MA. Cytokeratin 18 is expressed on the hepatocyte plasma membrane surface and interacts with thrombin-antithrombin complexes. J Biol Chem 1997; 272: 28574-81.
  • 58 Schulze AJ, Huber R, Bode W, Engh RA. Structural aspects of serpin inhibition. FEBS Lett 1994; 344: 117-24.
  • 59 Joslin G, Krause JE, Hershey AD, Adams SP, Fallon RJ, Perlmutter DH. Amyloid β-peptide, substance P, and bombesin bind to the serpin-enzyme complex receptor. J Biol Chem 1991; 266: 21897-902.
  • 60 Boland K, Manias K, Perlmutter DH. Specificity in recognition of amyloid-β peptide by the serpin-enzyme complex receptor in hepatoma cells and neuronal cells. J Biol Chem 1995; 270: 28022-8.
  • 61 Osterberg R, Malmensten B. Methylamine-induced conformational change of alpha-2-macroglobulin and its zinc (III) binding capacity. An X-ray scattering study. Eur J Biochem 1984; 143: 541-4.
  • 62 Ohlsson K. Elimination of 125I-trypsin α-macroglobulin complexes from blood by reticuloendothelial cells in dog. Acta Physiol Scand 1971; 81: 269-72
  • 63 Jensen PH, Moestrup SK, Gliemann J. Purification of the human placental alpha 2-macroglobulin receptor. FEBS Lett 1988; 255: 275-80.
  • 64 Moestrup SK, Gliemann J. Purification of the rat hepatic α2-macroglobulin receptor as an approximately 440 kDa single chain protein. J Biol Chem 1989; 264: 15574-7.
  • 65 Ashcom JD, Tiller SE, Dickerson K, Cravens JL, Argraves WS, Strickland DK. The human α2-macroglobulin receptor: Identification of 420-kdD cell surface glycoprotein specific for the activated conformation of α2-macroglobulin. J Cell Biol 1990; 110: 1041-8.
  • 66 Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 1990; 265: 17401-4.
  • 67 Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the alpha 2-macroglobulin receptor. FEBS Lett 1990; 276: 151-5.
  • 68 Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: A review. Int J Cancer 1997; 72: 1-22.
  • 69 Strickland DK, Kounnas MA, Argraves WS. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB 1995; 9: 890-7.
  • 70 Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Ann Rev Biochem 1994; 63: 601-37.
  • 71 Moestrup SK, Gliemann J, Pallesen G. Distribution of the α2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res 1992; 269: 375-82.
  • 72 Zheng G, Bachinsky DR, Stamenkovic I, Strickland DK, Brown D, Andres G, McCluskey RT. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/α2-macroglobulin receptor, and the receptor-associated protein (RAP). J Histochem Cytochem 1994; 42: 531-42.
  • 73 Luoma J, Hiltunen T, Sarkioja T, Moestrup SK, Gliemann J, Kodama T, Nikkari T, Yla-Herttuala S. Expression of α2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions. J Clin Invest 1994; 93: 2014-21.
  • 74 Lupu F, Heim D, Bachmann F, Kruithof EK. Expression of LDL-receptor-related protein in human normal and atherosclerotic arteries. Arterio Thromb 1994; 14: 1438-44.
  • 75 Jardi M, Ingele S-E, steve J, Burgal M, Azqueta C, Velasco F, Lopez-Pedrera C, Miles L, Felez J. Distinct patterns of urokinase receptor (uPAR) expression by leukemic cells and peripheral blood cells. Thromb Haemost 1996; 76: 1009-19.
  • 76 Quinn KA, Grimsley PG, Dai Y-P, Tapner M, Chesterman CN, Owensby DA. Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. J Biol Chem 1997; 272: 23946-51.
  • 77 Lundgren S, Carling T, Hjalm G, Juhlin C, Rastad J, Pihlgren U, Rask L, Akerstrom G, Hellman P. Tissue distribution of human gp330/megalin, a putative Ca2+-sensing protein. J Histochem Cytochem 1997; 45: 383-92.
  • 78 Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T. Rabbit very low density lipoprotein receptor: A low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci USA 1992; 89: 9252-6.
  • 79 Sakai J, Hoshino A, Takahashi T, Miura Y, Hirofumi I, Hiroyuki S, Kawarabayasi Y, Yamamoto T. Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J Biol Chem 1994; 269: 2173-82.
  • 80 Webb JC, Patel DD, Jones MD, Knight BL, Soutar AK. Characterization and tissue-specific expression of the human very low density lipoprotein (VLDL) receptor mRNA. Hum Mol Genet 1994; 3: 531-7.
  • 81 Herz J, Kowal RC, Goldstein JL, Brown MS. Proteolytic processing of the 600 kD low density lipoprotein receptor-related protein LRP occurs in a tranS-Golgi compartment. EMBO J 1990; 9: 1769-76.
  • 82 Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS. Low density lipo-protein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 1989; 86: 5810-4.
  • 83 Chen W-J, Goldstein JL, Brown MS. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 1990; 265: 3116-23.
  • 84 Schwartz AL. Receptor cell biology: Receptor mediated endocytosis. Pediatric Res 1995; 38: 835-43.
  • 85 Goldstein JL, Brown MS, Anderson RGW, Russell DW, Schneider WJ. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Ann Rev Cell Biol 1985; 1: 1-39.
  • 86 Jensen PH, Gliemann J, Orntoft T. Characterization of carbohydrates in the α2-macroglobulin receptor. FEBS Lett 1992; 305: 129-32.
  • 87 Williams SE, Ashcom JD, Argraves WS, Strickland DK. A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem 1992; 267: 9035-40.
  • 88 Kounnas MZ, Argraves WS, Strickland DK. The 39-kDa receptor associated protein interacts with two members of the low density lipoprotein receptor family, α2-macroglobulin receptor and glycoprotein 330. J Biol Chem 1992; 267: 21162-6.
  • 89 Battey F, Gafvels ME, Fitzgerald DJ, Argraves WS, Chappell DA, Strauss III JF, Strickland DK. The 39 kDa receptor-associated protein regulates ligand binding by the very low density lipoprotein receptor. J Biol Chem 1994; 269: 23268-373.
  • 90 Medh JD, Fry GL, Bowen SL, Pladet MW, Strickland DK, Chappell DA. The 39 kDa receptor-associated protein modulates lipoprotein catabolism by binding to LDL receptors. J Biol Chem 1995; 270: 536-40.
  • 91 Willnow TE, Orth K, Herz J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. J Biol Chem 1994; 269: 15827-32.
  • 92 Horn IR, van den Berg BMM, van der Meijden PZ, Panneekoek H, van Zonneveld A-J. Molecular analysis of ligand binding to the second cluster of complement-type repeats of the low density lipoprotein receptor-related protein. J Biol Chem 1997; 272: 13608-13.
  • 93 Biemesderfer D, Dekan G, Aronson PS, Farquhar MG. Biosynthesis of the gp330/44-kDa Heymann nephritis antigenic complex: Assembly takes place in the ER. Am J Physiol 1993; 264: F1011-F1020.
  • 94 Bu G, Maksymovitch EA, Geuze H, Schwartz AL. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem 1994; 269: 29874-82.
  • 95 Bu G, Rennke S. Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein. J Biol Chem 1996; 271: 22218-24.
  • 96 Willnow TE, Rohlmann A, Horton J, Otani H, Braun JR, Hammer RE, Herz J. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J 1996; 15: 2632-9.
  • 97 Orth K, Madison EL, Gething J, Sambrook JF, Herz J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc Natl Acad Sci USA 1992; 89: 7422-6.
  • 98 Bu G, Maksymovitch EA, Schwartz AL. Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein-related protein on human hepatoma HepG2 cells. J Biol Chem 1993; 268: 13002-9.
  • 99 Nykjaer A, Petersen CM, Moller B, Jensen PH, Moestrup SK, Holtet TL, Etzerodt M, Thogersen HC, Munch M, Andreasen PA, Gliemann J. Purified alpha2-macroglobulin receptor/LDL receptor-related protein binds urokinase plasminogen activator inhibitor type-1 complex. Evidence that the alpha2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 1992; 267: 14543-6.
  • 100 Herz J, Clouthier DE, Hammer RE. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 1992; 71: 411-21.
  • 101 Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low density lipo-protein receptor- related protein and gp330 bind similar ligands including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 1992; 267: 26172-80.
  • 102 Moestrup SK, Nielsen S, Andreasen P, Jorgensen KE, Nykaer A, Roigaard H, Gliemann J, Christensen EI. Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator-plasminogen activator inhibitor type-1 complexes. J Biol Chem 1993; 268: 16564-70.
  • 103 Heegard CW, Simonsen ACW, Oka K, Kjoller L, Christensen A, Madsen B, Ellgaard L, Chan L, Andreasen PA. Very low density lipoprotein receptor binds and mediates endocytosis of urokinase-type plasminogen activator-type-1 plasminogen activator inhibitor complex. J Biol Chem 1995; 270: 20855-61.
  • 104 Argraves KM, Battey FD, MacCalman CD, McCrae KR, Gafvels M, Kozarsky KF, Chappell DA, Strauss JF, Strickland DK. The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase and urokinase-plasminogen activator inhibitor type I complexes. J Biol Chem 1995; 270: 26550-7.
  • 105 Kasza A, Peterse HH, Heegard CW, Kazuhiro O, Christensen A, Dubin A, Chan L, Andreasen PA. Specificity of serine proteinase/serpin complex binding to very-low-density-lipoprotein receptor and α2-macroglobulin receptor/low-density-lipoprotein-receptor-related protein. Eur J Biochem 1997; 248: 270-81.
  • 106 Willnow TE, Herz J. Genetic deficiency in low density lipoprotein receptor-related protein confers cellular resistance to Pseudomonas exotoxin A. Evidence that this protein is required for uptake and degradation of multiple ligands. J Cell Science 1994; 107: 719-26.
  • 107 Stefansson S, Lawrence DA, Argraves WS. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem 1996; 271: 8215-20.
  • 108 Poller W, Willnow TE, Hilpert J, Herz J. Differential recognition of α1-antitrypsin-elastase and α1-antichymotrypsin-cathepsin G complexes by the low density lipoprotein receptor-related protein. J Biol Chem 1995; 270: 2841-5.
  • 109 Moestrup SK, Holtet TL, Etzerodt M, Thogersen HC, Nykjaer A, Andreasen PA, Rasmussen HH, Sottrup-Jensen L, Gliemann J. α2-macroglobulin-proteinase complexes, plasminogen activator inhibitor type-1-plasminogen activator complexes, and receptor-associated protein bind to a region of the α2-macroglobulin receptor containing a cluster of eight complement- type repeats. J Biol Chem 1993; 268: 13691-6.
  • 110 Horn IR, Moestrup SK, van den Burg BMM, Pannekoek H, Nielsen MS, van Zonneveld A-J. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library. J Biol Chem 1995; 270: 11770-5.
  • 111 Bu G, Williams S, Strickland DK, Schwartz AL. Low density lipoprotein receptor-related protein/alpha-2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci USA 1992; 89: 7427-31.
  • 112 Iadonato SP, Bu G, Maksymovitch EA, Schwartz AL. Interaction of a 39 kDa protein with the low-density-lipoprotein-related protein (LRP) on rat hepatoma cells. Biochem J 1993; 296: 867-75.
  • 113 Knauer MF, Kridel SJ, Hawley SB, Knauer DJ. The efficient catabolism of thrombin-proteinase nexin 1 complexes is a synergistic mechanism that requires both the LDL receptor-related protein and cell surface heparins. J Biol Chem 1997; 272: 29039-45.
  • 114 Knauer MF, Hawley SB, Knauer DJ. Identification of a binding site in proteinase nexin 1 (PN1) required for the receptor-mediated internalization of PN1-thrombin complexes. J Biol Chem 1997; 272: 12261-4.
  • 115 Tomasini BR, Mosher DF. On the identity of vitronectin and S-protein: Immunological crossreactivity and functional studies. Blood 1986; 68: 737-42.
  • 116 Izumi M, Yamada KM, Hayashi M. Vitronectin exists in two structurally and functionally distinct forms in human plasma. Biochim Biophys Acta 1989; 990: 101-8.
  • 117 Tomasini BR, Mosher DF. Conformational states of vitronectin: preferential expression of an antigenic epitope when vitronectin is covalently and non-covalently complexed with thrombin-antithrombin III or treated with urea. Blood 1988; 72: 903-12.
  • 118 Stockmann A, Hess S, Declerck P, Timpl R, Preissner KT. Multimeric vitronectin. Identification and characterization of conformation-dependent self-association of the adhesive protein. J Biol Chem 1993; 268: 22874-82.
  • 119 Preissner KT, Jenne D. Structure of vitronectin and its biological role in haemostasis. Thromb Hemost 1991; 66: 123-32.
  • 120 Tomasini BR, Mosher DF. Vitronectin. Prog Hemost Thromb 1990; 10: 269-305.
  • 121 Mimuro J, Loskutoff DJ. Purification of a protein from bovine plasma that binds to type 1 plasminogen activator inhibitor and prevents its interaction with extracellular matrix. J Biol Chem 1989; 264: 936-9.
  • 122 Podack ER, Kolb WP, Muller-Eberhard HJ. The SC5b-7 complex: formation, isolation, properties, and subunit composition. J Immunol 1977; 119: 2024-9.
  • 123 Dahlbäck B, Podack ER. Characterization of human S-protein, an inhibitor of the membrane attack complexes of complement. Demonstration of a free reactive thiol group. Biochemistry 1985; 24: 2368-74.
  • 124 Podack ER, Dahlbäck B, Griffin JH. Interaction of S-protein of complement with thrombin and antithrombin during coagulation, Protection of thrombin by S-protein from antithrombin III inactivation. J Biol Chem 1986; 261: 7387-92.
  • 125 Preissner KT, Müller-Berghaus G. Neutralization and binding of heparin by S- protein/vitronectin in the inhibition of factor Xa by antithrombin III. J Biol Chem 1987; 262: 12247-53.
  • 126 Ill CR, Ruoslahti E. Association of thrombin-antithrombin III complex with vitronectin in serum. J Biol Chem 1985; 260: 15610-5.
  • 127 de Boer HC, de Groot PG, Bouma BN, Preissner KT. Ternary vitronectin-thrombin-antithrombin III complexes in human plasma. J Biol Chem 1993; 268: 1279-83.
  • 128 Preissner KT, Sié P. Modulation of heparin cofactor II function by S protein (vitronectin) and formation of a ternary S protein-thrombinheparin cofactor II complex. Thromb Haemost 1988; 60: 399-406.
  • 129 Liu L, Dewar L, Song Y, Kulczycky K, Blajchman MA, Fenton JW II, Andrew M, Delorme M, Ginsberg J, Preissner KT, Ofosu FA. Inhibition of thrombin by antithrombin III and heparin cofactor II in vivo. Thromb Haemost 1995; 73: 405-12.
  • 130 Rovelli G, Stone SR, Preissner KT, Monard D. Specific interaction of vitronectin with the cell-secreted proteinase inhibitor glia-derived nexin and its thrombin complex. Eur J Biochem 1990; 192: 797-803.
  • 131 Gouin-Thibault I, Dewar L, Kulczycky M, Sternback M, Ofosu FA. Factor Xa- antithrombin III complexes in plasma: Relationship to prothrombin activation in vivo. Br J Haematol 1996; 90: 669-80.
  • 132 van Meijer M, Stoop A, Smilde A, Preissner KT, van Zonneveld AJ, Pannekoek H. The composition of complexes between plasminogen activator inhibitor 1, vitronectin, and either thrombin or tissue-type plasminogen activator. Thromb Hemostas 1997; 77: 516-21.
  • 133 Preissner KT, de Boer H, Pannekoek H, de Groot PG. Thrombin regulation by physiological inhibitors: the role of vitronectin. Semin Thromb Hemost 1996; 22: 165-72.
  • 134 Liang OD, Rosenblatt S, Chatwal GS, Preissner KT. Identification of novel heparin-binding domains of vitronectin. FEBS Letts 1997; 407: 169-72.
  • 135 de Boer HC, Preissner KT, Bouma BN, de Groot PG. Internalization of vitronectin-thrombin-antithrombin complex by endothelial cells leads to deposition of the complex into the subendothelial matrix. J Biol Chem 1995; 270: 30733-40.
  • 136 Narita M, Bu G, Olins GM, Higuchi DA, Herz J, Broze Jr GJ, Schwartz AL. Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vivo. J Biol Chem 1995; 270: 24800-4.
  • 137 Chappel DA, Fry GL, Waknitz MA, Iverius P-H, Williams SE, Strickland DK. The low density lipoprotein receptor-related protein/α2-macroglobulin receptor binds and mediates catabolism of bovine milk lipo-protein lipase. J Biol Chem 1993; 267: 25674-767.
  • 138 Coutts JC, Gallagher JT. Receptors for fibroblast growth factors. Immunol Cell Biol 1995; 73: 584-9.
  • 139 Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors?. Cell 1995; 83: 357-60.
  • 140 Krapp A, Ahle S, Kersting S, Hua Y, Kneser K, Nielsen M, Gliemann J, Beisiegel U. Hepatic lipase mediates the uptake of chylomicrons and beta-VLDL into cells via the LDL receptor-related protein (LRP). J Lipid Res 1996; 37: 926-36.
  • 141 Mikhailenko I, Kounnas MZ, Strickland D. Low density lipoprotein receptor-related protein/α2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. J Biol Chem 1995; 270: 9543-9.
  • 142 Godyna S, Liau G, Popa H, Stefansson S, Argraves WS. Identification of the low density lipoprotein receptor-related protein (LRP) as an endocytic receptor for thrombospondin-1. J Cell Biol 1995; 129: 1403-10.
  • 143 Chen H, Strickland DK, Mosher DF. Metabolism of thrombospondin 2: binding and degradation by 3T3 cells and glycosaminoglycan-variant Chinese hamster ovary cells. J Biol Chem 1996; 271: 15993-9.
  • 144 Warshawsky I, Herz J, Broze GJ, Schwartz AL. The low density lipoprotein receptor-related protein can function independently from heparan sulphate proteoglycans in tissue factor pathway inhibitor endocytosis. J Biol Chem 1996; 271: 25873-9.
  • 145 Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J. The α2-macroglobulin receptor/low density lipoprotein receptor- related protein binds lipoprotein lipase and β-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993; 268: 15048-55.
  • 146 Behrendt N, Ronne E, Dano K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe-Seyler 1995; 376: 269-79.
  • 147 Bu G, Warshawsky I, Schwartz AL. Cellular receptors for the plasminogen activators. Blood 1994; 83: 3427-36.
  • 148 Christensen L, Wiborg Simonsen AC, Heegaard CW, Moestrup SK, Andersen JA, Andreasen PA. Immunohistochemical localization of urokinase-type plasminogen activator, type-1 plasminogen-activator inhibitor, urokinase receptor, and α2-macroglobulin receptor in human breast carcinomas. Int J Cancer 1996; 66: 441-52.
  • 149 Vassalli JD, Baccino D, Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol 1985; 100: 86-92.
  • 150 Appella E, Robinson EA, Ulrich SJ, Stoppelli MP, Corti A, Cassani G, Blasi F. The receptor-binding sequence of urokinase. J Biol Chem 1987; 262: 4437-40.
  • 151 Mazar AP, Buko A, Petros AM, Barnathan ES, Henkin J. Domain analysis of urokinase plasminogen activator (u-PA): Preparation and characterization of intact A-chain molecules. Fibrinolysis 1992; 6 (Suppl. 01) Suppl. 49-55.
  • 152 Ellis V, Wun TC, Behrendt N, Ronne E, Dano K. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J Biol Chem 1990; 265: 9904-8.
  • 153 Conese M, Nykjaer A, Petersen CM, Cremona O, Pardi R. Andreasen PA, Gliemann J, Christensen EI, Blasi F. α2-macroglobulin receptor/ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol 1995; 131: 1609-22.
  • 154 Nykjaer A, Kjoller L, Cohen RL, Lawrence DA, Garni-Wagner BA, Todd III RF, van Zonneveld A-J, Gliemann J, Andreasen PA. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic α2-macroglobulin receptor/low density lipoprotein receptor-related protein. J Biol Chem 1994; 269: 25668-76.
  • 155 Kanse SM, Kost C, Wilhelm OG, Andreasen PA, Preissner KT. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res 1996; 224: 344-53.
  • 156 Peake PW, Greenstein JD, Pussell BA, Charlesworth JA. The behaviour of human vitronectin in vivo: Effects of complement activation, conformation, and phosphorylation. Clin Exp Immunol 1997; 106: 416-22.
  • 157 Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science 1998; 279: 514-9.
  • 158 Fuchs E, Weber K. Intermediate filaments: Structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63: 345-82.
  • 159 Okanoue T, Ohta M, Fushiki S, Ou O, Kachi K, Okuno T, Takino T, French SW. Scanning electron microscopy of the liver cell cytoskeleton. Hepatology 1985; 5: 1-6.
  • 160 French SW, Kawahara H, Katsuma Y, Ohta M, Swierenga SHH. Interaction of intermediate filaments with nuclear lamina and cell periphery. Electron Microsc Rev 1989; 2: 17-51.
  • 161 Steinert PM, Idler WW, Zimmerman SB. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol 1976; 108: 547-76.
  • 162 Hembrough TA, Vasudevan J, Allieta MM, Glass II WF, Gonias SL. A cytokeratin 8-like plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci 1995; 108: 1071-82.
  • 163 Hembrough TA, Li L, Gonias SL. Cell-surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem 1996; 271: 25684-91.
  • 164 Schmaier AH. Contact activation: A revision. Thromb Haemost 1997; 78: 101-7.
  • 165 Chou C-F, Riopel CL, Omary BM. Identification of a keratin-associated protein that localizes to a membrane compartment. Biochem J 1994; 298: 457-63.
  • 166 Voorschuur AH, Kuiper J, Neelissen JAM, Boers W, Van Berkel TJC. Different zonal distribution of the asialoglycoprotein receptor, the α2-macroglobulin receptor/low-density-lipoprotein receptor-related protein and the lipoprotein-remnant receptor of rat liver parenchymal cells. Biochem J 1994; 303: 809-16.
  • 167 Busso N, Masur SK, Lazega D, Waxman S, Ossowski L. Induction of cell migration by prourokinase binding to its receptor: Possible mechanism for signal transduction in human epithelial cells. J Cell Biol 1994; 126: 259-70.
  • 168 Hintner H, Stanzl U, Dahlback K, Dahlback B, Breathnach SM. Vitronectin shows complement-independent binding to isolated keratin filament aggregates. J Invest Derm 1989; 93: 656-61.
  • 169 Stavridi ES, O’Malley K, Lukacs CM, Moore WT, Lambris JD, Christianson DW, Rubin H, Cooperman BS. Structural change in α-chymotrypsin induced by complexation with α1- antichymotrypsin as seen by enhanced sensitivity to proteolysis. Biochemistry 1996; 35: 10608-15.
  • 170 Church FC, Pratt CW, Hoffman M. Leukocyte chemoattractant peptides from the serpin heparin cofactor II. J Biol Chem 1990; 266: 704-9.
  • 171 Rodenburg KW, Kjoller L, Petersen HH, Andreasen PA. Binding of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex to the endocytosis receptors α2-macroglobulin receptor/low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor. Biochem J 1998; 329: 55-63.
  • 172 Stefansson S, Muhammad S, Cheng X-F, Battey FD, Strickland DK, Lawrence DA. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem 1998; 273: 6358-66.
  • 173 Berryman DE, Bensadoun A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem 1995; 270: 24525-31.
  • 174 Hardy MM, Feder J, Wolfe RA, Bu G. Low density lipoprotein receptor-related protein modulates the expression of tissue-type plasminogen activator in human colon fibroblasts. J Biol Chem 1997; 272: 6812-7.
  • 175 Gan JC. Catabolism of desialylated human plasma alpha-1-antitrypsin and its trypsin complex in the rat. Arch Biochem Biophys 1979; 194: 149-56.
  • 176 Vogel CN, Kingdon HS, Lundblad RL. Correlation of the in vivo and in vitro inhibition of thrombin by plasma inhibitors. J Lab Clin Med 1979; 93: 66-673.
  • 177 Wuillemin WA, Bleeker WK, Agterberg J, Rigter G, ten Cate H, Hack CE. Clearance of human factor XIa-inhibitor complexes in rats. Brit J Haematol 1996; 93: 950-4.
  • 178 Wing LR, Hawksworth GM, Bennett B, Booth NA. Clearance of t-PA, PAI-1, and t-PA- PAI-1 complex in an isolated perfused rat liver system. J Lab Clin Med 1991; 117: 109-14.
  • 179 Grimsley PG, Normyle JF, Brandt RA, Joulianos G, Chesterman CN, Hogg PJ, Owensby DA. Urokinase binding and catabolism by HepG2 cells is plasminogen activator inhibitor-1 dependent, analogous to interactions of tissue-type plasminogen activator with these cells. Thromb Res 1995; 79: 353-61.