Thromb Haemost 1998; 79(02): 417-422
DOI: 10.1055/s-0037-1615001
Letters to the Editor
Schattauer GmbH

In Vitro Anticoagulant Properties of a Minimum Functional Fragment of Human Thrombomodulin and In Vivo Demonstration of its Benefit as an Anticoagulant in Extracorporeal Circulation Using a Monkey Model

Makoto Suzuki
1   From the Laboratory for Pharmacology, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd., Shizuoka, Japan
,
Mitsunobu Mohri
1   From the Laboratory for Pharmacology, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd., Shizuoka, Japan
,
Syuji Yamamoto
1   From the Laboratory for Pharmacology, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd., Shizuoka, Japan
› Author Affiliations
Further Information

Publication History

Received 18 February 1997

Accepted after resubmission 24 September 1997

Publication Date:
08 December 2017 (online)

Summary

Recently, we demonstrated that the last three consecutive epidermal growth factor-like structures of human thrombomodulin form the minimum functional fragment for protein C activating activity. In this study, the recombinant minimum functional fragment of human thrombomodulin (E456) had similar activities for protein C activation and clotting time compared to the recombinant extracellular domains of human thrombomodulin (rhsTM) previously described. E456 had a shorter half-life (6-9 min) in animals, compared to rhsTM (5 h). To evaluate whether or not E456 is a suitable anticoagulant for extra-corporeal circulation, the effects of E456 were investigated in the extracorporeal circulation model in monkeys. The effect of E456 at a dose of 0.03 mg/kg plus 0.113 mg/kg/h on circuit pressure was as potent as that of low molecular weight heparin, Fragmin, at a dose of 30 IU/kg plus 15IU/kg/h. E456, however, also more effectively suppressed an increase of thrombin-antithrombin III complex than Fragmin. Also the APTT quickly returned to the pre-treatment level following E456, but did not when using Fragmin. Moreover, E456 had no influence on the plasma free fatty acid levels, while Fragmin significantly increased them. Thus, E456 appears to have anticoagulant properties which make it more suitable anticoagulant in extracorporeal circulation than Fragmin.

 
  • References

  • 1 Swartz RD. Hemorrhage during high-risk hemodialysis using controlled heparinization. Nephron 1981; 28: 65-9.
  • 2 Agresti J, Conroy JD, Olshan A, Conroy FJ, Schwartz A, Brodsky I, Krevolin L, Chinitz J. Heparin-free hemodialysis with cuprophan hollow fiber dialyzers by a frequent saline flush, high blood flow technique. Am Soc Artif Intern Organs 1985; 31: 590-4.
  • 3 Brgrem H, Leivestad T. Dialysis death and increased free fatty acids. Lancet 1978; 2: 1160.
  • 4 Zuman RM, Rubin RH, Cato AE, Cocchetto DM, Crow JW, Tolkoff-Robin N. Hemodialysis using prostacyclin instead of heparin as the sole anti-thrombotic agent. N Engl J Med 1981; 304: 934.
  • 5 Holmer E, Kurachi K, Soderstrom G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factorXa, factor IXa, factor XIIa and kallikrein by antithrombin. Biochem J 1981; 24: 395-400.
  • 6 Green D, Hirsh J, Heit J, Prins M, Davidson B, Lensing AWA. Low molecular weight heparin: a critical analysis of clinical trials. Pharm Rev 1994; 46: 89-109.
  • 7 Maurin N, Kierdorf H. A low molecular weight heparin in hemodialysis. Klin Wochenschr 1988; 66: 246-9.
  • 8 Ljungberg B, Blombäck M, Johnsson H, Lins LE. A single dose of a low molecular weight heparin fragment for anticoagulation during hemodialysis. Clin Nephrol 1987; 27: 31-5.
  • 9 Ireland H, Lane DA, Flynn A, Pegrum AC, Curtis JR. Low molecular weight heparin in hemodialysis for chronic renal failure: Dose finding study of CY222. Thromb Haemost 1988; 59: 240-7.
  • 10 Persson E, Nordenstrom J, Nilsson-Ehle P. Plasma kinetics of lipoprotein lipase and hepatic lipase activates induced by heparin and a low molecular weight heparin fragment. Scand J Clin Lab Invest 1987; 47: 151-5.
  • 11 Persson E, Nordenstrom J, Hilsson-Ehle P, Hagenfeldt L. Lipolytic and anticoagulant activates of a low molecular weight fragment of heparin. Eur J Clin Invest 1985; 15: 215-20.
  • 12 Raymond C, Vanholder AA, Camez NM, Veys JS, Manouchehr M, Claudine S, Severin R. Recombinant hirudin: A specific thrombin inhibiting anticoagulant for hemodialysis. Kidney Int 1994; 45: 1754-9.
  • 13 Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of proteinC. J Biol Chem 1982; 257: 859-64.
  • 14 Marker RA, Kleiss AJ, Griffin JH. Mechanism of action on human activated proteinC, a thrombin-dependent anticoagulant enzyme. Blood 1982; 59: 1067-72.
  • 15 Suzuki K, Stenflo J, Dahlbäck B, Teodorsson B. Inactivation of human coagulation factor V by activated protein C. J Biol Chem 1983; 258: 1914-20.
  • 16 Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factorV activation. J Biol Chem 1982; 257: 7944-7.
  • 17 Esmon NL, Carroll RC, Esmon CT. Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 1983; 258: 12238-42.
  • 18 Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for proteinC activation. EMBO J 1987; 6: 1891-7.
  • 19 Suzuki K, Hayashi T, Nishioka J, Kosaka Y, Zushi M, Honda G, Yamamoto S. A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for proteinC activation. J Biol Chem 1989; 264: 4872-6.
  • 20 Ohishi R, Watanabe N, Aritomi M, Gomi K, Kiyota T, Yamamoto S, Ishida T, Maruyama I. Evidence that the proteinC activation pathway amplifies the inhibition of thrombin generation by recombinant human thrombomodulin in plasma. Thromb Haemost 1993; 70: 423-6.
  • 21 Gonda Y, Hirata S, Saitoh K, Aoki Y, Mohri M, Gomi K, Sugihara T, Kiyota T, Yamamoto S, Ishida T, Maruyama I. Antithrombotic effect of recombinant human soluble thrombomodulin on endotoxin-induced disseminated intravascular coagulation in rats. Thromb Res 1993; 71: 325-35.
  • 22 Mohri M, Oka M, Aoki Y, Gonda Y, Hirata S, Gomi K, Kiyota T, Sugihara T, Yamamoto S, Ishida T, Maruyama I. Intravenous extended infusion of recombinant human soluble thrombomodulin prevented tissue factor-induced disseminated intravascular coagulation in rats. Am J Hematol 1994; 45: 298-303.
  • 23 Aoki Y, Takei R, Mohri M, Gonda Y, Gomi K, Sugihara T, Kiyota T, Yamamoto S, Ishida T, Maruyama I. Antithrombotic effects of recombinant human soluble thrombomodulin (rhsTM) on arteriovenous shunt thrombosis in rats. Am J Hematol 1994; 47: 162-6.
  • 24 Aoki Y, Ohishi R, Takei R, Matsuzaki O, Mohri M, Saitoh K, Gomi K, Sugihara T, Kiyota T, Yamamoto S, Ishida T, Maruyama I. Effects of recombinant human soluble thrombomodulin (rhsTM) on rat model of disseminated intravascular coagulation with decreased levels of plasma antithrombinIII. Thromb Res 1994; 71: 452-5.
  • 25 Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for proteinC-activating cofactor activity and anticoagulant activity. J Biol Chem 1989; 264: 10351-3.
  • 26 Zushi M, Gomi K, Honda G, Kondo S, Yamamoto S, Hayashi T, Suzuki K. Aspartic acid 349 in the fourth epidermal growth factor-like structure of human thrombomodulin plays a role in its Ca2+-mediated binding to proteinC. J Biol Chem 1991; 266: 19886-9.
  • 27 Aritomi M, Watanabe N, Ohishi R, Gomi K, Kiyoto T, Yamamoto S, Ishida T, Maruyama I. Recombinant human soluble thrombomodulin delivers bounded thrombin to antithrombin III: Thrombomodulin associates with free thrombin and is recycled to activate protein C. Thromb Haemost 1993; 70: 418-22.
  • 28 Gomi K, Zushi M, Honda G, Kawahara S, Matsuzaki O, Yamamoto S, Maruyama I, Suzuki K. Antithrombotic effect of recombinant human thrombomodulin on thrombin-induced thromboembolism in mice. Blood 1990; 75: 1396-9.
  • 29 Fenton JMII, Landis BH, Wale DA, Finlayson JS. In: Chemistry and biology of thrombin. Lundblad RL, Fenton JWII, Mann KG. eds. Ann Arbor Science Publications; Ann Arbor, MI: 1977. pp 43-70.
  • 30 Kisiel W, Davie EW. In: Methods Enzymol. 1981 pp 320-33.
  • 31 Lowry OH, Rowebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-75.
  • 32 Honda G, Masaki C, Zushi M, Tsuruta K, Sata M, Mohri M, Gomi K, Kondo S, Yamamoto S. The roles of played by the D2 and D3 domains of recombinant human thrombomodulin in its function. Biochem J 1995; 118: 1030-6.
  • 33 Filimberti E, Cinotti S, Salvadori M, Amato M, Longo M, Nazzari M, Morfini M. Hemodialysis with defibrotide: effects on coagulation parameters. Int J Artif Organs 1992; 15: 590-4.
  • 34 Schultze G, Hollmann S, Sinah P. Formation of thrombin-antithrombin III complex using polyamide and hemophan dialyzers. Int J Artif Organs 1992; 15: 370-3.
  • 35 Tansey MJB, Opie LM. Relation between plasma free fatty acids and arrhythmias within the first twelve hours of acute myocardial infarction. Lancet 1983; 20: 419-21.
  • 36 De-Lima JJ, Lopes HF, Grupi CJ, Abensur H, Giorgi MC, Krieger EM. Blood pressure influences the occurrence of complex ventricular arrhythmia in hemodialysis patients. Hypertension 1995; 26: 1200-3.
  • 37 Ibels LS, Reardon MF, Nestel PJ. Plasma post-heparin lipolytic activity and triglyceride clearance in uremic and hemodialysis patients and renal allo-graft recipients. J Lab Clin Med 1976; 87: 648-58.