Thromb Haemost 1998; 80(04): 531-541
DOI: 10.1055/s-0037-1615415
Review Article
Schattauer GmbH

Structure-function Relationships in Serpins: Current Concepts and Controversies

Ann Gils
1   From the Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Paul J. Declerck
1   From the Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 05 December 1997

Accepted after resubmission 17 June 1998

Publication Date:
08 December 2017 (online)

Introduction

Almost two decades ago, a new superfamily of proteins was proposed, based on the similarity between the primary structure of ovalbumin, α1-antitrypsin (also known as α1-proteinase inhibitor) and antithrombin III (1). Even though the acronym “serpins” (serine proteinase inhibitors) was given to these proteins (2), it became soon apparent that a variety of non-inhibitory serpins [e.g. ovalbumin (3), maspin (4), pigment epithelium-derived factor (5)] as well as serpins that inhibit cysteine proteinases [e.g. interleukin-1 β converting enzyme inhibitor (6), cathepsin L inhibitor (7)] belong to this superfamily. Serpins represent about 10% of the total protein in plasma. From these serpins, α1-proteinase inhibitor represents 70%. A number of serpins play a critical role in the regulation of important physiological processes such as blood coagulation (e.g. antithrombin III), fibrinolysis (e.g. plasminogen activator inhibitor 1, PAI-1), complement activation (e.g. C1-inhibitor), and inflammation (e.g. α1-antichymotrypsin) (8) (Table 1). The serpins comprise more than 40 proteins identified from viruses, plants, insects and animals but not from prokaryotes (9). All serpins consist of about 400 residues with molecular masses in the range of 38 to 70 kDa (dependent on the degree of glycosylation) and an overall amino acid homology of approximately 35% (10). Huber and Carrell (10) reported that the conserved residues are localized either internal or in niches on the surface.

All serpins have the same highly ordered tertiary structure consisting of 3 β-pleated sheets A, B and C, α-helices A through I and a reactive site loop containing residues P16 to P10’ (10, 11) (Fig. 1). The reactive site, designated P1P1’ and comprising the bait peptide bond, is located within this loop structure situated 30-40 amino acids from the carboxy-terminal end. Using the nomenclature of Schechter and Berger (13), the residues N-terminal to the scissile bond are designated the P-residues (P16 up to P1) whereas the residues to the C-terminal end are designated the P’-residues (P1’ up to P10’) (Table 2).

Even though almost all serpins contain Cys residues, only few of them (α2-antiplasmin, C1-inhibitor and antithrombin III) harbor disulfide bridges (10). For α2-antiplasmin it was recently shown that abolishing the disulfide bridge does not influence the thermodynamic stability, the inhibitory activity and the clearance by the receptors (14). Even though reduction of one of the three antithrombin III disulfide bonds does not affect the rate of thrombin inhibition as such, it does abolish the heparin-induced acceleration of the thrombin-antithrombin III interaction (15). These findings suggest that under certain conditions disulfide bridges may play a role in the functional properties of a serpin.

 
  • References

  • 1 Hunt LT, Dayhoff MO. A surprising new protein superfamily containing ovalbumin.. Biochem Biophys Res Commun 1980; 95: 864-71.
  • 2 Carrell RW, Travis J. α1-antitrypsin and the serpins: variation and counter-variation.. Trends Biochem Sci 1985; 10: 20-4.
  • 3 Wright HT. Ovalbumin is an elastase substrate.. J Biol Chem 1984; 259: 14335-6.
  • 4 Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells.. Science 1994; 263: 526-9.
  • 5 Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family.. Proc Natl Acad Sci USA 1993; 90: 1526-30.
  • 6 Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme.. Cell 1992; 69: 597-604.
  • 7 Takeda A, Yamamoto T, Nakamura Y, Takahashi T, Hibino T. Squamous cell carcinoma antigen is a potent inhibitor of cysteine proteinase cathepsin L.. FEBS Lett 1995; 359: 78-80.
  • 8 Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation.. J Biol Chem 1994; 269: 15957-60.
  • 9 Marshall CJ. Evolutionary relationships among the serpins.. Philos Trans R Soc Lond B Biol Sci 1993; 342: 101-19.
  • 10 Huber R, Carrell RW. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins.. Biochemistry 1989; 28: 8951-66.
  • 11 Sprang SR. The latent tendencies of PAI-1.. Trends Biochem Sci 1992; 17: 49-50.
  • 12 Aertgeerts K, Debondt HL, De Ranter CJ, Declerck PJ. A model of the reactive form of plasminogen activator inhibitor-1.. J Struct Biol 1994; 113: 239-45.
  • 13 Schechter I, Berger A. On the size of the active site in proteases.. Biochem Biophys Res Commun 1967; 27: 157-62.
  • 14 Christensen S, Valnickova Z, Thogersen IB, Olsen EHN, Enghild JJ. Assignment of a single disulfide bridge in human alpha2-antiplasmin: implications for the structural and functional properties.. Biochem J 1997; 323: 847-52.
  • 15 Longas MO, Ferguson WS, Finlay TH. A disulfide bond in antithrombin is required for heparin-accelerated thrombin inactivation.. J Biol Chem 1980; 255: 3436-41.
  • 16 Loebermann H, Tokuoka R, Deisenhofer J, Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function.. J Mol Biol 1984; 177: 531-56.
  • 17 Baumann U, Huber R, Bode W, Grosse D, Lesjak M, Laurell CB. Crystal structure of cleaved human α1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins.. J Mol Biol 1991; 218: 595-606.
  • 18 Baumann U, Bode W, Huber R, Travis J, Potempa J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 Å resolu tion.. J Mol Biol 1992; 226: 1207-18.
  • 19 Mourey L, Samama JP, Delarue M, Petitou M, Choay J. Moras, D.. Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution.. J Mol Biol 1993; 232: 223-41.
  • 20 Wright HT, Qian HX, Huber R. Crystal structure of plakalbumin, a proteolytically nicked form of albumin. Its relationship to the structure of cleaved α1-proteinase inhibitor.. J Mol Biol 1990; 213: 513-28.
  • 21 Stein PE, Leslie AGW, Finch JT, Turnell WG, McLaughlin PJ, Carrell RW. Crystal structure of ovalbumin as a model for the reactive center of serpins.. Nature 1990; 347: 99-102.
  • 22 Stein PE, Tewkesbury DA, Carrell RW. Ovalbumin and angiotensinogen lack S-R conformational change.. Biochem J 1989; 262: 103-7.
  • 23 Carrell RW, Evans DL, Stein P. Mobile reactive centre of serpins and the control of thrombosis.. Nature 1991; 353: 576-8.
  • 24 Aertgeerts K, Debondt HL, De Ranter CJ, Declerck PJ. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1.. Nature Struct Biol 1995; 2: 891-7.
  • 25 Wright HT, Blajchman MA. Proteolytically cleaved mutant antithrombin-Hamilton has high stability to denaturation characteristic of wild type inhibitor serpins.. FEBS Lett. 1994; 348: 14-6.
  • 26 Sancho E, Declerck PJ, Price NC, Kelly SM, Booth NA. Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate, and cleaved forms.. Biochemistry 1995; 34: 1064-9.
  • 27 Gils A, Knockaert I, Declerck PJ. Substrate behaviour of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop.. Biochemistry 1996; 35: 7474-81.
  • 28 Wei A, Rubin H, Cooperman BS, Christianson DW. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop.. Nature Struct Biol 1994; 1: 251-8.
  • 29 Song HK, Lee KN, Kwon KS, Yu MH, Suh SW. Crystal structures of an uncleaved alpha 1-antitrypsin reveals the conformation of its inhibitory reactive loop.. FEBS Lett 1995; 377: 150-4.
  • 30 Elliott PR, Lomas DA, Carrell RW, Abrahams JP. Inhibitory conformation of the reactive loop of α1-antitrypsin.. Nature Struct Biol 1996; 3: 676-81.
  • 31 Carrell RW, Stein PE, Fermi G, Wardell MR. Biological implications of a 3 Å structure of dimeric antithrombin.. Structure 1994; 2: 257-70.
  • 32 Schreuder HA, deBoer B, Dijkema R, Mulders J, Theunissen HJM, Grootenhuis PDJ, Hol WGJ. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions.. Nature Struct Biol 1994; 1: 48-54.
  • 33 Stein PE, Chothia C. Serpin tertiary structure transformation.. J Mol Biol 1991; 221: 615-21.
  • 34 Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ. Structural basis of latency in plasminogen activator inhibitor-1.. Nature 1992; 355: 270-3.
  • 35 Olson ST, Bock PE, Kvassman J, Shore JD, Lawrence DA, Ginsburg D, Bjork I. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes.. J Biol Chem 1995; 270: 30007-17.
  • 36 Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR. Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. Congenital substitution of arginine 393 to cysteine in antithrombin Northwick Park and to histidine in antithrombin Glasgow.. J Biol Chem 1988; 263: 5589-93.
  • 37 Lane DA, Erdjument H, Thompson E, Panico M, Di Marzo V, Morris HR, Leone G, De Stefano V, Thein SL. A novel amino acid substitution in the reactive site of a congenital variant antithrombin. Antithrombin Pescara, ARG393 to pro, caused by a CGT to CCT mutation.. J Biol Chem 1989; 264: 10200-4.
  • 38 Owen MC, Beresford CH, Carrell RW. Antithrombin Glasgow, 393 Arg to His: a P1 reactive site variant with increased heparin affinity but no thrombin inhibitory activity.. FEBS Lett 1988; 231: 317-20.
  • 39 Lane DA, Erdjument H, Flynn A, Di Marzo V, Panico M, Morris HR, Greaves M, Dolan G, Preston FE. Antithrombin Sheffield: amino acid substitution at the reactive site (Arg393 to His) causing thrombosis.. Br J Haematol 1989; 71: 91-6.
  • 40 Erdjument H, Lane DA, Panico M, Di Marzo V, Morris HR, Bauer K, Rosenberg RD.. Antithrombin Chicago, amino acid substitution of argi-nine 393 to histidine.. Thromb Res 1989; 54: 613-9.
  • 41 Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin. Alpha 1-antitrypsin Pittsburgh (358 Met to Arg), a fatal bleeding disorder.. N Engl J Med 1983; 309: 694-8.
  • 42 Scott CF, Carrell RW, Glaser CB, Kueppers F, Lewis JH, Colman RW. Alpha-1-antitrypsin-Pittsburgh. A potent inhibitor of human plasma factor XIa, kallikrein, and factor XIIf.. J Clin Invest 1986; 77: 631-4.
  • 43 Wachtfogel YT, Bischoff R, Bauer R, Hack CE, Nuijens JH, Kucich U, Niewiarowski S, Edmunds Jr LH, Colman RW. Alpha 1, antitrypsin Pittsburgh (Met358→Arg) inhibits the contact pathway of intrinsic coagulation and alters the release of human neutrophil elastase during simulated extracorporeal circulation.. Thromb Haemost 1994; 72: 843-7.
  • 44 Travis J, Matheson NR, George PM, Carrell RW. Kinetic studies on the interaction of alpha 1-proteinase inhibitor (Pittsburgh) with trypsin-like serine proteinases.. Biol Chem Hoppe Seyler 1986; 367: 853-9.
  • 45 Derechin VM, Blinder MA, Tollefsen DM. Substitution of arginine for Leu444 in the reactive site of heparin cofactor II enhances the rate of thrombin inhibition.. J Biol Chem 1990; 265: 5623-8.
  • 46 Rubin H, Wang Z, Nickbarg EB, McLarney S, Naidoo N, Schoenberger OL, Johnson JL, Cooperman BS. Cloning, expression, purification, and biological activity of recombinant native and variant human alpha 1-anti-chymotrypsins.. J Biol Chem 1990; 265: 1199-207.
  • 47 Schechter NM, Jordan LM, James AM, Cooperman BS, Wang ZM, Rubin H. Reaction of human chymase with reactive site variants of alpha 1-anti-chymotrypsin. Modulation of inhibitor versus substrate properties.. J Biol Chem 1993; 268: 23626-33.
  • 48 Rubin H, Plotnick M, Wang ZM, Liu X, Zhong Q, Schechter NM, Cooperman BS. Conversion of alpha 1-antichymotrypsin into a human neutrophil elastase inhibitor: demonstration of variants with different association rate constants, stoichiometries of inhibition, and complex stabilities.. Biochemistry 1994; 33: 7627-33.
  • 49 Aulak KS, Pemberton PA, Rosen FS, Carrell RW, Lachmann PJ, Harrison RA. Dysfunctional C1-inhibitor (At), isolated from a type II hereditary-angio-oedema plasma, contains a P1 ‘reactive centre’ (Arg444→His) mutation.. Biochem J 1988; 253: 615-8.
  • 50 Eldering E, Huijbregts CC, Lubbers YT, Longstaff C, Hack CE. Characterization of recombinant C1 inhibitor P1 variants.. J Biol Chem 1992; 267: 7013-20.
  • 51 Phillips JE, Cooper ST, Potter EE, Church FC. Mutagenesis of recombinant protein C inhibitor reactive site residues alters target proteinase specificity.. J Biol Chem 1994; 269: 16696-700.
  • 52 Sherman PM, Lawrence DA, Yang AY, Vandenberg ET, Paielli D, Olson ST, Shore JD, Ginsburg D. Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center.. J Biol Chem 1992; 267: 7588-95.
  • 53 Sherman PM, Lawrence DA, Verhamme IM, Paielli D, Shore JD, Ginsburg D. Identification of tissue-type plasminogen activator-specific plasminogen activator inhibitor-1 mutants. Evidence that second sites of interaction contribute to target specificity.. J Biol Chem 1995; 270: 9301-6.
  • 54 York JD, Li P, Gardell SJ. Combinatorial mutagenesis of the reactive site region in plasminogen activator inhibitor I.. J Biol Chem 1991; 266: 8495-500.
  • 55 Gils A, Declerck PJ. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1.. J Biol Chem 1997; 272: 12662-6.
  • 56 Björk I, Nordenman B. Acceleration of the reaction between thrombin and antithrombin III by non-stoichiometric amounts of heparin.. Eur J Biochem 1976; 68: 507-11.
  • 57 Hoylaerts M, Owen WG, Collen D. Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III.. J Biol Chem 1984; 259: 5670-7.
  • 58 Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of anti-thrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement.. J Biol Chem 1992; 267: 12528-38.
  • 59 Craig PA, Olson ST, Shore JD. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction.. J Biol Chem. 1989; 264: 5452-61.
  • 60 Ehrlich HJ, Gebbink RK, Keijer J, Linders M, Preissner KT, Pannekoek H. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties.. J Biol Chem 1990; 265: 13029-35.
  • 61 Keijer J, Linders M, Wegman JJ, Ehrlich HJ, Mertens K, Pannekoek H. On the target specificity of plasminogen activator inhibitor-1: the role of heparin, vitronectin, and the reactive site.. Blood 1991; 78: 1254-61.
  • 62 Fa M, Karolin J, Aleshkov S, Strandberg L, Johansson LB, Ny T. Time-resolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type 1: conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin.. Biochemistry 1995; 34: 13833-40.
  • 63 Tollefsen DM, Pestka CA, Monafo WJ. Activation of heparin cofactor II by dermatan sulfate.. J Biol Chem 1983; 258: 6713-6.
  • 64 Hortin GL, Tollefsen DM, Benutto BM. Antithrombin activity of a peptide corresponding to residues 54-75 of heparin cofactor II.. J Biol Chem 1989; 264: 13979-82.
  • 65 Chang AC, Detwiler TC. The reaction of thrombin with platelet-derived nexin requires a secondary recognition site in addition to the catalytic site.. Biochem Biophys Res Commun 1991; 177: 1198-204.
  • 66 Wiman B, Collen D. On the kinetics of the reaction between human anti-plasmin and plasmin.. Eur J Biochem 1978; 84: 573-8.
  • 67 Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for ‘second-site’ interaction.. Biochem J 1988; 251: 327-32.
  • 68 Hekman CM, Loskutoff DJ. Kinetic analysis of the interaction between plasminogen activator inhibitor 1 and both urokinase and tissue type plasminogen activator.. Arch Biochem Biophys 1988; 262: 199-210.
  • 69 Lawrence DA, Strandberg L, Ericson J, Ny T. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1. Analysis of chimeric strained loop mutants.. J Biol Chem 1990; 265: 20293-301.
  • 70 Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activator.. Nature 1989; 339: 721-4.
  • 71 Madison EL, Goldsmith EJ, Gething MJ, Sambrook JF, Gerard RD. Restoration of serine protease-inhibitor interaction by protein engineering.. J Biol Chem 1990; 265: 21423-6.
  • 72 Tucker HM, Gerard RD. Sequence requirements in the reactive-center loop of plasminogen-activator inhibitor-1 for recognition of plasminogen activators.. Eur J Biochem 1996; 237: 180-7.
  • 73 Djie MZ, Stone SR, Le Bonniec BF. Intrinsic specificity of the reactive site loop of alpha1-antitrypsin, alpha1-antichymotrypsin, antithrombin III, and protease nexin I.. J Biol Chem 1997; 272: 16268-73.
  • 74 Pemberton PA, Wong DT, Gibson HL, Kiefer MC, Fitzpatrick PA, Sager R, Barr PJ. The tumor supressor maspin does not undergo the stressed to relaxed transition or inhibit trypsin-like serine proteases. Evidence that maspin is not a protease inhibitory serpin.. J Biol Chem 1995; 270: 15832-7.
  • 75 Laskowski M, Kato I. Protein inhibitors of proteinases.. Annu Rev Biochem 1980; 49: 593-626.
  • 76 Gettins P, Patston PA, Schapira M. The role of conformational change in serpin structure and function.. Bioessays 1993; 15: 461-7.
  • 77 Hood DB, Huntington JA, Gettins PGW. Alpha 1-proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways.. Biochemistry 1994; 33: 8538-47.
  • 78 Lawrence DA, Olson ST, Palaniappan S, Ginsburg D. Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition.. J Biol Chem 1994; 269: 27657-62.
  • 79 Hopkins PCR, Chang WSW, Wardell MR, Stone SR. Inhibitory mechanism of serpins.. J Biol Chem 1997; 272: 3905-9.
  • 80 Kaslik G, Patthy A, Balint M, Graf L. Trypsin complexed with alpha 1-proteinase inhibitor has an increased structural flexibility.. FEBS Lett 1995; 370: 179-83.
  • 81 Lawrence DA, Ginsburg D, Day DE, Berkenpas MB, Verhamme IM, Kvassman JO, Shore JD. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates.. J Biol Chem. 1995; 270: 25309-12.
  • 82 Shore JD, Day DE, Francis-Chmura AM, Verhamme I, Kvassman J, Lawrence DA, Ginsburg D. A fluorescent probe study of plasminogen activator inhibitor-1. Evidence for reactive center loop insertion and its role in the inhibitory mechanism.. J Biol Chem 1995; 270: 5395-8.
  • 83 Wilczynska M, Fa M, Ohlsson PI, Ny T. The inhibition mechanism of ser-pins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex.. J Biol Chem 1995; 270: 29652-5.
  • 84 Fish WW, Bjork I. Release of a two-chain form of antithrombin from the antithrombin-thrombin complex.. Eur J Biochem 1979; 101: 31-8.
  • 85 Olson ST. Heparin and ionic strength-dependent conversion of anti-thrombin III from an inhibitor to a substrate of alpha-thrombin.. J Biol Chem 1985; 260: 10153-60.
  • 86 Patston PA, Gettins P, Beechem J, Shapira M. Mechanism of serpin action: evidence that C1-inhibitor functions as a suicide substrate.. Biochemistry 1991; 30: 8876-82.
  • 87 Cooperman BS, Stavridi E, Nickbarg E, Rescorla E, Schechter NM, Rubin H. Antichymotrypsin interaction with chymotrypsin. Partitioning of the complex.. J Biol Chem 1993; 268: 23616-25.
  • 88 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a non-inhibitory substrate for tissue-type plasminogen activator.. J Biol Chem 1992; 267: 11693-6.
  • 89 Urano T, Strandberg L, Johansson LB, Ny T. A substrate-like form of plasminogen activator inhibitor type 1. Conversions between different forms by sodium dodecyl sulphate.. Eur J Biochem 1992; 209: 985-92.
  • 90 Munch M, Heegaard CW, Andreasen PA. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor.. Biochim Biophys Acta 1993; 1202: 29-37.
  • 91 Kjöller L, Martensen PM, Sottrup-Jensen L, Justesen J, Rodenburg KW, Andreasen PA. Conformational changes of the reactive-centre loop and β-strand 5A accompany temperature-dependent inhibitor-substrate transition of plasminogen-activator inhibitor 1.. Eur J Biochem 1996; 241: 38-46.
  • 92 Gils A, Declerck PJ. Modulation of plasminogen activator inhibitor 1 by Triton X-100. Identification of two consecutive conformational transitions.. Thromb Haemost 1998; 80: 286-91.
  • 93 Schulze AJ, Baumann U, Knof S, Jaeger E, Huber R, Laurell C. Structural transition of α1-antitrypsin by a peptide sequentially similar to β-strand s4A.. Eur J Biochem 1990; 194: 51-6.
  • 94 Björk I, Ylinenjärvi K, Olson ST, Bock PE. Conversion of antithrombin from an inhibitor of thrombin to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the inhibitor.. J Biol Chem 1992; 267: 1976-82.
  • 95 Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on the protonation of a single group that affects loop insertion into β-sheet A.. J Biol Chem 1995; 270: 27942-7.
  • 96 Eitzman DT, Fay WP, Lawrence DA, Francis-Chmura AM, Shore JD, Olson ST, Ginsburg D. Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro.. J Clin Invest 1995; 95: 2416-20.
  • 97 Asakura S, Matsuda M, Yoshida N, Shigeharu T, Kihara H. A monoclonal antibody that triggers deacylation of an intermediate thrombin-antithrombin III complex.. J Biol Chem 1989; 264: 13736-9.
  • 98 Asakura S, Hirata H, Okazaki H, Hashimoto Gotoh T, Matsuda M. Hydro-phobic residues 382-386 of antithrombin III, Ala-Ala-Ala-Ser-Thr, serve as the epitope for an antibody which facilitates hydrolysis of the inhibitor by thrombin.. J Biol Chem 1990; 265: 5135-8.
  • 99 Debrock S, Declerck PJ. Identification of a functional epitope in plasminogen activator inhibitor-1, not localized in the reactive center loop.. Thromb Haemost 1998; 79: 597-601.
  • 100 Patston PA, Gettins PGW. A database of recombinant wild-type and mutant serpins.. Thromb Haemost 1994; 72: 166-79.
  • 101 Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease?. Nature Struct Biol 1995; 2: 96-113.
  • 102 Davis AE, Aulak K, Parad RB, Stecklein HP, Eldering E, Hack CE, Kramer J, Strunk RC, Bissler J, Rosen FS. C1 inhibitor hinge region mutations produce dysfunction by different mechanisms.. Nat Genet 1992; 1: 354-8.
  • 103 Skriver K, Wikoff WR, Patston PA, Tausk F, Schapira M, Kaplan AP, Bock SC. Substrate properties of C1 inhibitor Ma (alanine 434-glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status.. J Biol Chem 1991; 266: 9216-21.
  • 104 Devraj-Kizuk R, Chui DH, Prochownik EV, Carter CJ, Ofosu FA, Blajchman MA. Antithrombin-III-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity.. Blood 1988; 72: 1518-23.
  • 105 Perry DJ, Harper PL, Fairham S, Daly M, Carrell RW. Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction.. FEBS Lett 1989; 254: 174-6.
  • 106 Holmes WE, Lijnen HR, Nelles L, Kluft C, Nieuwenhuis HK, Rijken DC, Collen D. α2-Antiplasmin Enschede: alanine insertion and abolition of plasmin inhibitory activity.. Science 1987; 238: 209-11.
  • 107 Tucker HM, Mottonen J, Goldsmith EJ, Gerard RD. Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition.. Nature Struct Biol 1995; 2: 442-5.
  • 108 Audenaert AM, Knockaert I, Collen D, Declerck PJ. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop.. J Biol Chem 1994; 269: 19559-64.
  • 109 Gils A, Knockaert I, Declerck PJ. Construction and characterization of plasminogen activator inhibitor 1 mutants in which the active site loop is deleted.. Fibrinolysis & Proteolysis 1997; 11: 265-71.
  • 110 Mikus P, Urano T, Liljestrom P, Ny T. Plasminogen activator inhibitor 2 (PAI-2) is a spontaneously polymerizing serpin: Biochemical characterization of the recombinant intracellular and extracellular forms.. Eur J Biochem 1993; 218: 1071-82.
  • 111 Verpy E, Couture-Tosi E, Eldering E, Lopez-Trascasa M, Spath P, Meo T, Tosi M. Crucial residues in the carboxy-terminal end of C1 inhibitor revealed by pathogenic mutants impaired in secretion or function.. J Clin Invest 1995; 95: 350-9.
  • 112 Eldering E, Verpy E, Roem D, Meo T, Tosi M. COOH-terminal substitutions in the serpin C1 inhibitor that cause loop overinsertion and subsequent multimerization.. J Biol Chem 1995; 270: 2579-87.
  • 113 Aulak KS, Eldering E, Hack CE, Lubbers YP, Harrison RA, Mast A, Cicardi M, Davis AE. A hinge region mutation in C1-inhibitor (Ala436→Thr) results in nonsubstrate-like behavior and in polymerization of the molecule.. J Biol Chem 1993; 268: 18088-94.
  • 114 Jeppsson JO. Amino acid substitution Glu leads to Lys alpha1-antitrypsin PiZ.. FEBS Lett. 1976; 65: 195-7.
  • 115 Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn→Asp).. J Clin Invest 1994; 94: 2265-74.
  • 116 Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver.. Nature 1992; 357: 605-7.
  • 117 Faber JP, Poller W, Olek K, Baumann U, Carlson J, Lindmark B, Eriksson S. The molecular basis of alpha 1-antichymotrypsin deficiency in a heterozygote with liver and lung disease.. J Hepatol 1993; 18: 313-21.
  • 118 Lomas DA, Evans DL, Stone SR, Chang WS, Carrell RW. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin.. Biochemistry 1993; 32: 500-8.
  • 119 Lomas DA, Elliott PR, Chang WS, Wardell MR, Carrell RW. Preparation and characterization of latent alpha 1-antitrypsin.. J Biol Chem 1995; 270: 5282-8.
  • 120 Patston PA, Hauert J, Michaud M, Shapira M. Formation and properties of C1-inhibitor polymers.. FEBS Lett 1995; 36: 401-4.
  • 121 Mast AE, Enghild JJ, Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis.. Biochemistry 1992; 31: 2720-8.
  • 122 Skinner R, Abrahams JP, Whisstock JC, Lesk AM, Carrell RW, Wardell MR. The 2.6 Å structure of antithrombin indicates a conformational change at the heparin binding site.. J Mol Biol 1997; 266: 601-9.
  • 123 Koloczek H, Banbula A, Salvesen GS, Potempa J. Serpin α1-proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.. Protein Science 1996; 5: 2226-35.
  • 124 Chang WSW, Whisstock J, Hopkins PCR, Lesk AM, Carrell RW, Wardell MR. Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins.. Protein Science 1997; 6: 89-98.
  • 125 Carrell RW, Whisstock J, Lomas DA. Conformational changes in serpins and the mechanism of alpha 1-antitrypsin deficiency.. Am J Respir Crit Care Med 1994; a 150: 171-75.
  • 126 Sancho E, Tonge DW, Hockney RC, Booth NA. Purification and characterization of active and stable recombinant plasminogen activator inhibitor (PAI-1) accumulated at high level in Escherichia coli.. Eur J Biochem 1994; 224: 125-34.
  • 127 Lawrence DA, Olson ST, Palaniappan S, Ginsburg D. Engineering plasminogen activator inhibitor 1 mutants with increased functional stability.. Biochemistry 1994; 33: 3643-8.
  • 128 Berkenpas MB, Lawrence DA, Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1: functional stability.. EMBO J 1995; 14: 2969-77.
  • 129 Gils A, Lu J, Aertgeerts K, Knockaert I, Declerck PJ. Identification of positively charged residues contributing to the stability of plasminogen activator inhibitor 1.. Febs Lett 1997; 415: 192-5.
  • 130 Ehrlich HJ, Gebbink RK, Keijer J, Pannekoek H. Elucidation of structural requirements on plasminogen activator inhibitor 1 for binding to heparin.. J Biol Chem 1992; 267: 11606-11.
  • 131 Ersdal-Badju E, Lu A, Zuo Y, Picard V, Bock SC. Identification of the antithrombin III heparin binding site.. J Biol Chem 1997; 272: 19393-400.
  • 132 Kuhn LA, Griffin JH, Fisher CL, Greengard JS, Bouma BN, Espana F, Tainer JA. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor.. Proc Natl Acad Sci USA 1990; 87: 8506-10.
  • 133 Shirk RA, Elisen MG, Meijers JC, Church FC. Role of the H helix in heparin binding to protein C inhibitor.. J Biol Chem 1994; 269: 28690-5.
  • 134 Declerck PJ, De Mol M, Alessi MC, Baudner S, Paques EP, Preissner KT, Muller-Berghaus G, Collen D. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin).. J Biol Chem 1988; 263: 15454-61.
  • 135 Lindahl TL, Sigurdardottir O, Wiman B. Stability of plasminogen activator inhibitor 1 (PAI-1).. Thromb Haemost 1989; 62: 748-51.
  • 136 Mimuro J, Loskutoff DJ. Binding of type 1 plasminogen activator inhibitor to the extracellular matrix of cultured bovine endothelial cells.. J Biol Chem 1989; 264: 5058-63.
  • 137 van Meijer M, Klein Gebbink R, Preissner KT, Pannekoek H. Determination of the vitronectin binding site on plasminogen activator inhibitor-1 (PAI-1).. FEBS Lett 1994; 352: 342-6.
  • 138 Lawrence DA, Berkenpas MB, Palaniappan S, Ginsburg D. Localization of vitronectin binding domain in plasminogen activator inhibitor-1.. J Biol Chem 1994; 269: 15223-8.
  • 139 Padmanabhan J, Sane DC. Localization of a vitronectin binding region on plasminogen activator inhibitor-1.. Thromb Haemost 1995; 73: 829-34.
  • 140 van Meijer M, Stoop A, Smilde A, Preissner KT, van Zonneveld AJ, Pannekoek H. The composition of complexes between plasminogen activator inhibitor 1, vitronectin and either thrombin or tissue-type plasminogen activator.. Thromb Haemost 1997; 77: 516-21.
  • 141 Jarvis JA, Munro SLA, Craik DJ. Homology model of thyroxine binding globulin and elucidation of the thyroid binding site.. Prot Eng 1992; 5: 61-7.
  • 142 Edgar P, Stein PE. Hormone binding site of corticosteroid binding globulin.. Nature Struct Biol 1995; 2: 196-7.
  • 143 Naidoo N, Cooperman BS, Wang ZM, Liu XZ, Rubin H. Identification of lysines within α1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements.. J Biol Chem 1995; 270: 14548-55.
  • 144 Lijnen HR, Hoylaerts M, Collen D. Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein.. J Biol Chem 1980; 255: 10214-22.
  • 145 Wiman B, Lijnen HR, Collen D. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen.. Biochim Biophys Acta 1979; 579: 142-54.
  • 146 Andreasen PA, Sottrup Jensen L, Kjöller L, Nykjaer A, Moestrup SK, Petersen CM, Gliemann J. Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes.. FEBS Lett 1994; 338: 239-45.
  • 147 Perlmutter DH, Joslin G, Nelson P, Schasteen C, Adams SP, Fallon RJ. Endocytosis and degradation of alpha 1-antitrypsin-protease complexes is mediated by the serpin-enzyme complex (SEC) receptor.. J Biol Chem 1990; 265: 16713-6.
  • 148 Moestrup SK. The alpha 2-macroglobulin receptor and epithelial glyco-protein-330: two giant receptors mediating endocytosis of multiple ligands.. Biochim Biophys Acta 1994; 1197: 197-213.
  • 149 Kasza A, Petersen HH, Heegaard CW, Oka K, Christensen A, Dubin A, Chan L, Andreasen PA. Specificity of serine proteinase/serpin complex binding to very-low-density lipoprotein receptor and alpha2-macro-globulin receptor/low-density-lipoprotein-receptor-related protein.. Eur J Biochem 1997; 248: 270-81.
  • 150 Stubbs MT, Bode W. Coagulation factors and their inhibitors.. Curr Opin Struct Biol 1994; 4: 823-32.
  • 151 Rodenburg KW, Kjöller L, Petersen HH, Andreasen PA. Binding of urokinase-type plasminogen activator plasminogen activator inhibitor-1 Gils, Declerck: Structure-function Relationships in Serpins complex to the endocytosis receptors alpha(2)-macroglobulin receptor low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor.. Biochem J 1998; 329: 55-63.
  • 152 Wright HT, Scarsdale JN. Structural basis for serpin inhibitor activity.. Proteins 1995; 22: 210-25.
  • 153 Aertgeerts K, De Ranter CJ, Booth NA, Declerck PJ. Rational design of complex formation between plasminogen activator inhibitor-1 and its target proteinases.. J Struct Biol. 1997; 118: 236-42.
  • 154 Stratikos E, Gettins PGW. Major proteinase movement upon stable serpinproteinase complex formation.. Proc Natl Acad Sci USA 1997; 94: 453-8.
  • 155 Wilczynska M, Fa M, Karolin J, Ohlsson PI, Johansson LBA, Ny T. Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins.. Nature Struct Biol 1997; 4: 354-7.
  • 156 Plotnick MI, Mayne L, Schechter NM, Rubin H. Distortion of the active site of chymotrypsin complexed with a serpin.. Biochemistry 1996; 35: 7586-90.
  • 157 Lawrence DA. The serpin-proteinase complex revealed.. Nat Struct Biol 1997; 4: 339-41.
  • 158 Egelund R, Rodenburg KW, Andreasen PA, Rasmussen MS, Guldberg RE, Petersen TE. An ester bond linking a fragment of a serine proteinase to its serpin inhibitor.. Biochemistry 1998; 37: 6375-9.
  • 159 Sui GC, Wiman B. Functional effects of single amino acid substitutions in the region of phe(113) to asp(138) in the plasminogen activator inhibitor 1 molecule.. Biochemical Journal 1998; 331 Part 2 409-15.
  • 160 Xue Y, Björquist P, Inghardt T, Linschoten M, Musil D, Sjölin L, Deinum J. Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide.. Structure 1998; 6: 627-36.
  • 161 Sui GC, Wiman B. Stability of plasminogen activator inhibitor-1: role of tyrosine221.. FEBS Lett 1998; 423: 319-23.