Thromb Haemost 1999; 82(02): 468-480
DOI: 10.1055/s-0037-1615867
Research Article
Schattauer GmbH

Inherited Abnormalities of Platelets

Alan T. Nurden
1   Hôpital Cardiologique, Pessac, FRANCE
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

Genetic defects of platelets give rise to bleeding syndromes of varying severity. Affected areas of platelet function include the glycoprotein (GP) effectors of adhesion and aggregation, primary receptors for agonists, signaling pathways where messages are transmitted to targets elsewhere in the membrane or within the platelet, dense- and α-granule secretion, ATP production, and the expression of procoagulant activity. Glanzmann thrombasthenia (GT) and Bernard-Soulier syndrome (BSS) are the best-characterized platelet diseases and will have a major place in this review. GT is caused by abnormalities of platelet membrane GP IIb-IIIa (integrin αIIbβ3), resulting in absent platelet aggregation. BSS is caused by abnormalities of the GP Ib-IX-V complex, resulting in a loss of platelet adherence to vessel wall subendothelium. The disorders affecting platelet morphology, which give rise to the so-called giant platelet syndromes, are also considered.

Studies on platelet disorders are significant because the knowledge gained has provided a better understanding of the molecular basis of primary hemostasis and has helped in the development of new drugs for use in antithrombotic therapy. In 1987, this author gave the inaugural State-of-the-Art lecture at an International Society of Thrombosis and Haemostasis meeting.1 At that time, the application of molecular biology procedures to the study of platelet disorders was just beginning. Now, 12 years later, some of these data will be reviewed and the recent advances discussed.

 
  • References

  • 1 Nurden AT. Platelet membrane glycoproteins and their clinical significance. In: Verstraete M, Vermylen J, Lijnen R, Arnout J. eds. Thrombosis and Haemostasis 1987. Leuven, France: Leuven University Press; 1987: 93-125.
  • 2 Rosa J-P, Artçanuthurry V, Grelac F, Maclouf J, Caen JP, Levy-Toledano S. Reassessment of protein tyrosine phosphorylation in thrombasthenic platelets: evidence that phosphorylation of cortactin and a 64 kDa protein is dependent on thrombin activation and integrin αIIbβ3 . Thromb Haemost 1997; 89: 4385-4392.
  • 3 Byzova TV, Plow EF. Networking in the hemostatic system. Integrin αIIbβ3 binds prothrombin and influences its activation. J Biol Chem 1997; 272: 27183-27188.
  • 4 Gemmell CH, Sefton MV, Yeo EL. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem 1993; 268: 14586-14589.
  • 5 Reverter JC, Beguin S, Kessels H, Kumar R, Hemker HC, Coller BS. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and ‘clinical restenosis.’. J Clin Invest 1996; 98: 863-874.
  • 6 Shou Y, Baron S, Poncz M. An Sp1-binding silencer element is a critical negative regulator of the megakaryocyte-specific αIIb gene. J Biol Chem 1998; 273: 5716-5726.
  • 7 Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 1991; 77: 75-83.
  • 8 French DL. The molecular genetics of Glanzmann’s thrombasthenia. Platelets 1998; 9: 5-20.
  • 9 Friedlander M, Brooks PC, Shaffer RW, Kincald CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct αv integrins. Science 1995; 270: 1500-1502.
  • 10 Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Culleré M, Ross FP, Coller BS, Teitelbaum S, Hynes RO. ß3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229-238.
  • 11 Coller BS, Seligsohn U, Peretz H, Newman PJ. Glanzmann thrombasthenia: new insights from an historical perspective. Semin Hematol 1994; 31: 301-311.
  • 12 Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 479-486.
  • 13 Springer TA. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc Natl Acad Sci USA 1997; 94: 65-72.
  • 14 George JN, Caen J-P, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 1990; 75: 1383-1395.
  • 15 Nurden AT, George JN. Inherited disorders of the platelet membrane: Glanzmann thrombasthenia, Bernard–Soulier syndrome and other disorders. In: Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Vol IV. Philadelphia: JB Lippincott Co.; In press.
  • 16 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci USA 1991; 88: 3160-3164.
  • 17 Schlegel N, Gayet O, Morel-Kopp MC, Wyler B, Hurtaud-Roux M-F, Kaplan C, McGregor J. The molecular genetic basis of Glanzmann’s thrombasthenia in a gypsy population in France: identification of a new mutation on the αIIb gene. Blood 1995; 86: 977-982.
  • 18 Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domain of GP IIb. J Clin Invest 1995; 95: 1553-1560.
  • 19 Ruan J, Peyruchaud O, Alberio L, Valles G, Clemetson K, Bourre F, Nurden AT. Double heterozygosity of the GP IIb gene in a Swiss patient with Glanzmann’s thrombasthenia. Br J Haematol 1998; 102: 918-925.
  • 20 Djaffar I, Caen JP, Rosa J-P. A large alteration in the human platelet glycoprotein IIIa (integrin β3) gene associated with Glanzmann’s thrombasthenia. Hum Mol Genet 1993; 2: 2183-2185.
  • 21 Morel-Kopp MC, Kaplan C, Proulle V, Jallu V, Melchior C, Peyruchaud O, Aurousseau M-H, Kieffer N. A three amino acid deletion in glycoprotein IIIa is responsible for type I Glanzmann’s thrombasthenia: Importance of residues Ile325Pro326Gly327 for β3 integrin subunit association. Blood 1997; 90: 669-677.
  • 22 Jin Y, Dietz HC, Montgomery RA, Bell WR, McIntosh I, Coller B, Bray PF. Glanzmann thrombasthenia. Cooperation between sequence variants in Cis during splice selection. J Clin Invest 1996; 98: 1745-1754.
  • 23 Calvete JJ, Henschen A, Gonzalez-Rodriguez J. Assignment of disulfide bonds in human platelet GPIIIa. A disulfide pattern for the ß-subunits of the integrin family. Biochem J 1991; 274: 63-71.
  • 24 Grimaldi CM, Chen F, Scudder LE, Coller BS, French DL. A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa (ß3) in a Chinese patient with Glanzmann’s thrombasthenia. Blood 1996; 88: 1666-1675.
  • 25 Kolodziej MA, Vilaire G, Rifat S, Poncz M, Bennett JS. Effect of deletion of glycoprotein IIb exon 28 on the expression of the platelet GP IIb/IIIa complex. Blood 1991; 78: 2344-2353.
  • 26 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger III AL, Ginsberg MH. A ß3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249: 915-918.
  • 27 Chen Y, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser752->Pro mutation in the cytoplasmic domain of integrin ß3 subunit and defective activation of platelet integrin αIIbß3 (glycoprotein IIb-IIIa) in a variant of Glanzmann’s thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-10173.
  • 28 Chen Y-P, O’Toole TE, Ylänne J, Rosa JP, Ginsberg MH. A point mutation in the integrin cytoplasmic domain (S752->P) impairs bidirectional signaling through αIIbβ3 (platelet glycoprotein IIb-IIIa). Blood 1994; 84: 1857-1865.
  • 29 O’Toole TE, Katagiri Y, Faull RJ, Peter KH, Tamura R, Quaranta V, Loftus JC, Shattil SJ, Ginsberg MH. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 1994; 4: 1047-1059.
  • 30 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of ß3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbß3 complex. J Clin Invest 1997; 100: 2393-2403.
  • 31 Peyruchaud O, Nurden AT, Milet S, Macchi L, Pannochia A, Bray PF, Kieffer N, Bourre F. R to Q aminoacid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin αIIb subunit in a patient with a Glanzmann’s thrombasthenia-like syndrome. Blood 1998; 92: 4178-4187.
  • 32 Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271: 6571-6574.
  • 33 Low E, Qi W, Vilaire G, Bennett JS. Effect of cytoplasmic domain mutations on the agonist-stimulated ligand-binding activity of the platelet integrin αIIbß3 . J Biol Chem 1996; 271: 30233-30241.
  • 34 Shattil SJ, Kashiwagi H, Pampori N. Integrin signalling: the platelet paradigm. Blood 1998; 91: 2645-2657.
  • 35 Handagama PJ, Scarborough RA, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet α-granules is mediated by αIIbß3 (glycoprotein IIb-IIIa). Blood 1993; 82: 135-138.
  • 36 Wencel-Drake JD, Frelinger III AL, Dieter MG, Lam SC-T. Arg-Gly-Asp-dependent occupancy of GP IIb/IIIa by applagin: evidence for internalization and cycling of a platelet integrin. Blood 1995; 81: 62-69.
  • 37 Nurden P, Poujol C, Durrieu-Jais C, Winckler J, Combrié R, Macchi L, Bihour C, Wagner C, Jordan R, Nurden AT. Labeling of the internal pool of GP IIb-IIIa in platelets by c7E3 Fab fragments (abciximab): flow and endocytic mechanisms contribute to the transport. Blood 1999; 93: 1622-1633.
  • 38 Grimaldi CM, Chen F, Wu C, Weiss HJ, Coller BS, French DL. Glycoprotein IIb Leu214Pro mutation produces Glanzmann thrombasthenia with both quantitative and qualitative abnormalities in GPIIb/IIIa. Blood 1998; 91: 1562-1571.
  • 39 Jackson DE, White MM, Jennings LK, Newman PJ. A Ser162>Leu mutation within glycoprotein (GP) IIIa (integrin ß3) results in an unstable αIIbß3 complex that retains partial function in a novel form of type II Glanzmann thrombasthenia. Thromb Haemost 1998; 80: 42-48.
  • 40 Bray P. Inherited diseases of platelet glycoproteins: considerations for rapid molecular diagnosis. Thromb Haemost 1994; 72: 492-502.
  • 41 Peretz H, Seligsohn U, Zwang E, Coller BS, Newman PJ. Detection of the Glanzmann’s thrombasthenia mutations in Arab and Iraqi-Jewish patients by polymerase chain reaction and restriction analysis of blood and urine samples. Thromb Haemost 1991; 616: 500-504.
  • 42 French D, Coller BS, Usher S, Berkowitz R, Eng C, Seligsohn U, Peretz H. Prenatal diagnosis of Glanzmann thrombasthenia using the polymorphic markers BRCA1 and THRAI on chromosome 17. Br J Haematol 1998; 102: 582-587.
  • 43 Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard–Soulier syndrome. Blood 1998; 91: 4397-4418.
  • 44 Nurden P, Nurden AT. Giant platelets, megakaryocytes and the expression of glycoprotein Ib-IX complexes. CR Acad Sci Paris 1996; 319: 717-726.
  • 45 Tomer A, Scharf RE, McMillan R, Ruggeri ZM, Harker LA. Bernard–Soulier syndrome: quantitative characterization of megakaryocytes and platelets by flow cytometric and platelet kinetic measurements. Eur J Haematol 1994; 52: 193-200.
  • 46 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 47 Mazzucato M, De Marco L, Masotti A, Pradella P, Bahou WF, Ruggeri ZM. Characterization of the initial α-thrombin interaction with glycoprotein Ibα in relation to platelet activation. J Biol Chem 1998; 273: 1880-1887.
  • 48 Marchese P, Murata M, Mazzucato M, Pradella P, De Marco L, Ware J, Ruggeri ZM. Identification of three tyrosine residues of glycoprotein Ib with distinct roles in von Willebrand factor and α-thrombin binding. J Biol Chem 1995; 270: 9571-9578.
  • 49 Kahn ML, Zheng Y-W, Huang W, Bigornia V, Zeng D, Moff S, Farese Jr RV, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690-694.
  • 50 McNichol A, Sutherland M, Zou R, Drouin J. Defective thrombin-induced calcium changes and aggregation of Bernard–Soulier platelets are not associated with deficient moderate-affinity receptors. Arterioscler Thromb Vasc Biol 1996; 16: 628-632.
  • 51 Yagi M, Edelhoff S, Disteche CM, Roth GJ. Structural characterization and chromosomal localization of the gene encoding human platelet glycoprotein Ibβ. J Biol Chem 1994; 269: 17424-17427.
  • 52 Simsek S, Admiraal LG, Modderman PW, van der Schoot CE, von dem Borne AEG Kr. Identification of a homozygous single base pair deletion in the gene coding for the human platelet glycoprotein Ibα causing Bernard–Soulier syndrome. Thromb Haemost 1994; 72: 444-449.
  • 53 Kunishima S, Miura H, Fukutani H, Yoshida H, Osumi K, Kobayashi S, Ohno R, Naoe T. Bernard–Soulier syndrome Kagoshima: Ser444 ->Stop mutation of glycoprotein (GP) Ibα resulting in circulating truncated GP Ibα and surface expression of GP Ibα and GPIX. Blood 1994; 84: 3356-3362.
  • 54 Simsek S, Noris P, Lozano M, Pico M, von dem Borne AEG, Ribera A, Gallardo D. Cys209Ser mutation in the platelet membrane glycoprotein Ibα gene is associated with Bernard–Soulier syndrome. Br J Haematol 1994; 88: 839-844.
  • 55 Li CQ, Dong J-F, Lanza F, Sanan DA, Sae-Tung G, Lopez JA. Expression of platelet glycoprotein (GP) V in heterologous cells and evidence for its association with GP Ibα in forming a GP Ib-IX-V complex on the cell surface. J Biol Chem 1995; 270: 16302-16307.
  • 56 Budarf ML, Konkle BA, Ludlow LB, Michaud D, Yamashiro DA, McDonald McGinn D, Zackai EH, Driscoll DA. Identification of a patient with a Bernard–Soulier syndrome and a deletion in the DiGeorge/Velo-cardio-facial chromosomal region in 22q11.2. Hum Mol Genet 1995; 4: 763-766.
  • 57 Ludlow LB, Schick BP, Budarf ML, Driscoll DA, Zackai EH, Cohen A, Konkle BA. Identification of a mutation in a GATA binding site of the platelet glycoprotein Ibα promoter resulting in the Bernard–Soulier syndrome. J Biol Chem 1996; 271: 22076-22080.
  • 58 Wright SD, Michaelides K, Johnson DJD, West NC, Tuddenham EGD. Double heterozygosity for mutations in the platelet glycoprotein IX gene in three siblings with Bernard–Soulier syndrome. Blood 1993; 81: 2339-2347.
  • 59 Clemetson JM, Kyrie PA, Brenner B, Clemetson KJ. Variant Bernard–Soulier syndrome associated with a homozygous mutation in the leucine-rich domain of glycoprotein IX. Blood 1994; 84: 1124-1131.
  • 60 Sae-Tung G, Dong JF, Lopez JA. Biosynthetic defect in platelet glycoprotein IX mutants associated with Bernard–Soulier syndrome. Blood 1996; 87: 1361-1367.
  • 61 Noda M, Fujimura K, Takafuta T, Shimomura T, Fujii T, Katsutani S, Fujimoto T, Kuramoto A, Yamazaki T, Mochizuki T, Matsuzaki M, Sano M. A point mutation in glycoprotein IX coding sequence (Cys73(TGT) to Tyr(TAT) causes impaired surface expression of GP Ib/IX/V complex in two families with Bernard–Soulier syndrome. Thromb Haemost 1996; 76: 874-878.
  • 62 Ware J, Russell SR, Marchese P, Murata M, Mazzucato M, De Marco L, Ruggeri ZM. Point mutation in a leucine-rich repeat of platelet glycoprotein Ibα resulting in the Bernard–Soulier syndrome. J Clin Invest 1993; 92: 1213-1220.
  • 63 Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ibα leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard–Soulier disease. Blood 1992; 79: 439-446.
  • 64 De La Salle C, Baas M-J, Lanza F, Schwartz A, Hanau D, Chevalier J, Gachet C, Briquel ME, Cazenave JP. A three-base deletion removing a leucine residue in a leucine-rich repeat of platelet glycoprotein Ibα associated with a variant of Bernard–Soulier syndrome (Nancy I). Br J Haematol 1995; 89: 386-396.
  • 65 Li C, Martin SE, Roth GJ. The genetic defect in two well-studied cases of Bernard–Soulier syndrome: a point mutation in the fifth leucine-rich repeat of platelet glycoprotein Ibα. Blood 1995; 86: 3805-3814.
  • 66 Holmberg L, Karpman D, Nilsson I, Olofsson T. Bernard–Soulier syndrome Karlstrad: Trp 498 -> Stop mutation resulting in a truncated glycoprotein Ibα that contains part of the transmebranous domain. Br J Haematol 1997; 98: 57-63.
  • 67 Kunishima S, Lopez JA, Kobayashi S, Imai N, Kamiya T, Saito H, Naoe T. Missense mutations of the glycoprotein (GP) Ibß gene impairing the GP Ib α/ß disulfide linkage in a family with giant platelet disorder. Blood 1997; 89: 2404-2412.
  • 68 Berndt MC, Kabral A, Grimsley P, Watson N, Robertson TI, Bradstock KF. An acquired Bernard–Soulier-like defect associated with juvenile myelodysplastic syndrome. Br J Haematol 1988; 68: 97-101.
  • 69 Lemmink HH, Schroder CH, Monnens LA, Smeets HJ. The clinical spectrum of type IV collagen mutations. Hum Mutat 1997; 9: 477-499.
  • 70 Lecine P, Italiano JE, Aksoy E, Shivdasani RA. Molecular analysis of genetically thrombocytopenic mice reveals a potential biochemical pathway for terminal megakaryocyte differentiation and platelet release. Blood 1998; 92 (Suppl. 01) 569a.
  • 71 Nieuwenhuis HK, Sakariassen KS, Houdijk WPM, Nievelstein PFEM, Sixma JJ. Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: a defect in platelet spreading. Blood 1986; 68: 692-695.
  • 72 Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989; 84: 1440-1445.
  • 73 Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TNC, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997; 272: 13576-13583.
  • 74 Kritzik M, Savage B, Nugent DJ, Santoso S, Ruggeri ZM, Kunicki TJ. Nucleotide polymorphisms in the α2 gene define multiple alleles that are associated with differences in α2ß1 density. Blood 1998; 92: 2382-2388.
  • 75 Daniel JL, Dangelmaier C, Jin J, Ashby B, Smith BJ, Kunapuli SP. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem 1998; 273: 2024-2029.
  • 76 Gachet C, Cattaneo M, Ohlmann P, Hechler B, Lecchi A, Chevalier J, Cassel D, Mannucci PM, Cazenave JP. Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br J Haematol 1995; 91: 434-444.
  • 77 Nurden P, Savi P, Heilmann E, Bihour C, Herbert JM, Maffrand JP, Nurden AT. An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. J Clin Invest 1995; 95: 1612-1622.
  • 78 Humbert M, Nurden P, Bihour C, Pasquet JM, Winckler J, Heilmann E, Savi P, Herbert JM, Kunicki TJ, Nurden AT. Ultrastructural studies of platelet aggregates from human subjects receiving clopidogrel and from a patient with an inherited defect of an ADP-dependent pathway of platelet activation. Arterioscler Thromb Vasc Biol 1996; 16: 1532-1543.
  • 79 Levy-Toledano S, Maclouf J, Rosa JP, Gallet C, Valles G, Nurden P, Nurden AT. Abnormal tyrosine phosphorylation linked to a defective interaction between ADP and its receptor on platelets. Thromb Haemost 1998; 80: 463-468.
  • 80 Cattaneo M, Lombardi R, Zighetti ML, Gachet C, Ohlmann P, Cazenave JP, Mannucci PM. Deficiency of (33P)2MeS-ADP binding sites on platelets with secretion defect, normal granule stores and normal thromboxane A2 production. Evidence that ADP potentiates platelet secretion independently of the formation of large platelet aggregates and thromboxane A2 production. Thromb Haemost 1997; 77: 986-990.
  • 81 Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S. Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylate cyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest 1996; 97: 949-956.
  • 82 Rao AK. Congenital disorders of platelet function: disorders of signal transduction and secretion. Am J Med Sci 1998; 316: 69-76.
  • 83 Yang X, Sun L, Ghosh S, Rao AK. Human platelet signaling defect characterized by impaired production of inositol 1,4,5-triphosphate and phosphatidic acid and diminished plekstrin phosphorylation: evidence for defective phospholipase C activation. Blood 1996; 88: 1676-1683.
  • 84 Gabbeta J, Yang X, Kowalska MA, Sun L, Dhanasekaran N, Rao AK. Platelet signal transduction defect with Gα subunit dysfunction and diminished Gαq in a patient with abnormal platelet responses. Proc Natl Acad Sci USA 1997; 94: 8750-8755.
  • 85 Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998; 95: 8070-8074.
  • 86 Hayward CPM. Inherited disorders of platelet α-granules. Platelets 1997; 8: 197-209.
  • 87 Flaumenhaft R, Croce K, Chen E, Furie B, Furie BC. Snare proteins mediate platelet α-granule secretion: roles for vesicle-associated membrane protein, SNAP-23 and syntaxin. Blood 1998; 92 (Suppl. 01) 303a.
  • 88 Hayward CPM, Cramer EM, Kane WH, Zheng S, Bouchard M, Massé J-M, Rivard GE. Studies of a second family with the Quebec platelet disorder: Evidence that the degradation of the α-granule membrane and its soluble contents are not secondary to a defect in targeting proteins to α-granules. Blood 1997; 89: 1243-1253.
  • 89 Weiss HJ, Lages B, Vicic W, Tsung LY, White JG. Heterogeneous abnormalities of platelet dense granule ultrastructure in 20 patients with congenital storage pool deficiency. Br J Haematol 1993; 83: 282-295.
  • 90 Semple JW, Siminovitch KA, Mody M, Milev Y, Lazurus AH, Wright JF, Freedman J. Flow cytometric analysis of platelets from children with the Wiskott–Aldrich syndrome reveals defects in platelet development, activation and structure. Br J Haematol 1997; 97: 747-754.
  • 91 Zhu Q, Watanabe C, Liu T, Hollenbaugh D, Blaese RM, Kanner SB, Aruffo A, Ochs HD. Wiskott–Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood 1997; 90: 2680-2689.
  • 92 Symons M, Derry JMJ, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerisation. Cell 1996; 84: 723-734.
  • 93 Spritz RA. Molecular genetics of the Hermansky–Pudlak and Chediak–Higashi syndromes. Platelets 1998; 9: 21-29.
  • 94 Oh J, Ho L, Ala-Mello S, Amato D, Armstrong L, Bellucci S, Carakushansky G, Ellis JP, Fong CT, Green JS, Heon E, Legius E, Levin AV, Nieuwenhuis HK, Pinckers A, Tampura N, Whiteford ML, Tamasaki H, Spritz RA. Mutation analysis of patients with Hermansky-Pudlak syndrome: a frameshift hot spot in the HPS gene and apparent locus heterogeneity. Am J Hum Genet 1998; 62: 593-598.
  • 95 Karim MA, Nagle DL, Kandil HH, Burger J, Moore KJ, Spritz RA. Mutations in the Chediak–Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino caid CHS protein. Hum Mol Genet 1997; 6: 1087-1089.
  • 96 Zwaal RFA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997; 98: 1121-1131.
  • 97 Dachary-Prigent J, Pasquet JM, Fressinaud E, Toti F, Freyssinet JM, Nurden AT. Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics. Br J Haematol 1997; 99: 959-967.
  • 98 Zhou Q, Sims PJ, Wiedmer T. Expression of proteins controlling transbilayer movement of plasma membrane phospholipids in the B lymphocytes from a patient with Scott syndrome. Blood 1998; 92: 1707-1712.
  • 99 Kashiwagi H, Honda S, Tomiyama Y, Mizutani H, Take H, Honda Y, Kosugi S, Kanayama Y, Kurata Y, Matsuzawa Y. A novel polymorphism in glycoprotein IV (replacement of Proline-90 by serine) predominates in subjects with platelet GPIV deficiency. Thromb Haemost 1993; 69: 481-484.
  • 100 Nurden AT. Platelet glycoprotein IIIa polymorphism and coronary thrombosis. Lancet 1997; 350: 1189-1191.