Thromb Haemost 2001; 86(01): 316-323
DOI: 10.1055/s-0037-1616229
Research Article
Schattauer GmbH

Integrin Activation

D. G. Woodside
1   Department of Vascular Biology, The Scripps Research Institute, CA, USA
,
S. Liu
1   Department of Vascular Biology, The Scripps Research Institute, CA, USA
,
M. H. Ginsberg
1   Department of Vascular Biology, The Scripps Research Institute, CA, USA
› Author Affiliations
Supported by Grants from the NIH and American Heart Association. DGW is a recipient of a post-doctoral fellowship from the Arthritis Foundation. S. L. is a Special Fellow of the Leukemia Society of America.
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

Integrins are cell surface adhesion receptors that participate in a variety of important processes throughout the vasculature. Here we summarize some recent findings on the regulation of integrin mediated cellular adhesion. Particular emphasis is placed on the regulation of integrin affinity for ligand (activation), although this is just one mechanism by which regulation of integrin-dependent cell adhesion can occur. Also discussed are recent observations on the structural basis of integrin activation, the role of the cytoplasmic domain in integrin affinity regulation, and potential mechanisms by which activation signals are propagated from integrin cytoplasmic domains to the extracellular ligand binding domain.

 
  • References

  • 1 Hynes RO. Integrins: Versatility, modulation, and signalling in cell adhesion. Cell 1992; 69: 11-25.
  • 2 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-14.
  • 3 Schwartz MA, Schaller MD, Ginsberg MH. Integrins: Emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 1995; 11: 549-99.
  • 4 Kishimoto TK, Baldwin ET, Anderson DC. The role of β2 integrins in inflammation. In: Gallin JI, Snyderman R. editors. Inflammation: Basic principles and clinical correlates. Philadelphia: Lippincott Williams and Wilkins; 1999: 537-69.
  • 5 Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000; 113: 3563-71.
  • 6 Hemler ME. Integrin associated proteins. Curr Opin Cell Biol 1998; 10: 578-85.
  • 7 Ruggeri ZM, Bader R, DeMarco L. Glanzmann thrombasthenia: Deficient binding of von Willebrand factor to thrombin-stimulated platelets. Proc Natl Acad Sci USA 1982; 79: 6038-41.
  • 8 Mustard JF, Kinlough-Rathbone RL, Packham MA, Perry DW, Harfenist EJ, Pai KR. Comparison of fibrinogen association with normal and thrombasthenic platelets on exposure to ADP or chymotrypsin. Blood 1979; 54: 987-93.
  • 9 Marguerie GA, Plow EF, Edgington TS. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 1979; 254: 5357-63.
  • 10 Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 1979; 64: 1393-401.
  • 11 Dustin ML, Springer TA. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989; 341: 619-24.
  • 12 Davignon D, Martz E, Reynolds T, Kurzinger K, Springer TA. Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci USA 1981; 78: 4535-9.
  • 13 Ezekowitz RA, Sim RB, Hill M, Gordon S. Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J Exp Med 1984; 159: 244-60.
  • 14 Ramos JW, Whittaker CA, DeSimone DW. Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 1996; 122: 2873-83.
  • 15 Martin-Bermudo MD, Dunin-Borkowski OM, Brown NH. Modulation of integrin activity is vital for morphogenesis. J Cell Biol 1998; 141: 1073-81.
  • 16 Lauffenburger DA, Horowitz AF. Cell migration: a physically integrated molecular process. Cell 1996; 84: 359-69.
  • 17 Lotz MM, Burdsal CA, Erickson HP, McClay DR. Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol 1989; 109: 1795-805.
  • 18 Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphaIIb beta3. J Cell Biol 1998; 141: 1685-95.
  • 19 Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996; 97: 2139-44.
  • 20 Calderwood DA, Zent R, Grant R, Rees DJG, Hynes RO, Ginsberg MH. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274: 28071-4.
  • 21 Bennett JS, Zigmond S, Vilaire G, Cunningham ME, Bednar B. The platelet cytosleleton regulates the affinity of the integrin IIb 3 for fibrinogen. J Biol Chem 1999; 274: 25301-7.
  • 22 Yauch RL, Felsenfeld DP, Kraeft SK, Chen LB, Sheetz MP, Hemler ME. Mutational evidence for control of cell adhesion through Integrin diffusion/clustering, independent of ligand binding. J Exp Med 1997; 186: 1347-55.
  • 23 Peter K, O’Toole TE. Modulation of cell adhesion by changes in αL β2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction. J Exp Med 1995; 181: 315-26.
  • 24 Ginsberg MH, Du X, Plow EF. Inside-out integrin signalling. Curr Opin Cell Biol 1992; 4: 766-71.
  • 25 Stewart M, Hogg N. Regulation of leukocyte integrin function: affinity vs. avidity. J Cell Biochem 1996; 61: 554-61.
  • 26 van Kooyk Y, Figdor CG. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 2000; 12: 542-7.
  • 27 Coller BS, Seligsohn U, Peretz H, Newman PJ. Glanzmann thrombasthenia: new insights from a historical perspective. Semin Hematol 1994; 31: 301-11.
  • 28 Byzova TV, Plow EF. Activation of αvβ3 on vascular cells controls recognition of prothrombin. J Cell Biol 1998; 143: 2081-92.
  • 29 Byzova TV, Plow EF. Networking in the hemostatic system. Integrin αvβ3 binds prothrombin and influences its activation. J Biol Chem 1997; 274: 27183-8.
  • 30 Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309-19.
  • 31 Pampori N, Hato T, Stupack DG, Aidoudi S, Cheresh DA, Nemerow GR. et al. Mechanism and consequences of affinity modulation of integrin αvβ3 detected with a novel patch-engineered monovalent ligand. J Biol Chem 1999; 274: 21609-16.
  • 32 Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ. et al. A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Mol Cell 2000; 6: 851-60.
  • 33 Jung SM, Moroi M. Platelets interact with soluble and insoluble collagens through characteristically different reactions. J Biol Chem 1998; 273: 14827-37.
  • 34 Moroi M, Onitsuka I, Imaizumi T, Jung SM. Involvement of activated integrin α2β1 in the firm adhesion of platelets onto a surface of immobilized collagen under flow conditions. Thromb Haemost 2000; 83: 769-76.
  • 35 Argraves WS, Suzuki S, Arai H, Thompson K, Pierschbacher MD, Ruoslahti E. Amino acid sequence of the human fibronectin receptor. J Cell Biol 1987; 105: 1183-90.
  • 36 Pytela R, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 1985; 40: 191-8.
  • 37 Adams JC, Watt FM. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 1989; 340: 307-9.
  • 38 Adams JC, Watt FM. Changes in keratinocyte adhesion during terminal differentiation: Reduction in fibronectin binding precedes α5β1 integrin loss from the cell surface. Cell 1990; 63: 425-35.
  • 39 Faull RJ, Kovach NL, Harlan JM, Ginsberg MH. Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J Exp Med 1994; 179: 1307-16.
  • 40 Sechler JL, Corbett SA, Schwarzbauer JE. Modulatory roles for Integrin activation and the synergy site of fibronectin during matrix assembly. Mol Biol Cell 1997; 8: 2563-73.
  • 41 Wu C, Keivens VM, O’Toole TE, McDonald JA, Ginsberg MH. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 1995; 83: 715-24.
  • 42 Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 1998; 141: 539-51.
  • 43 Hynes RO. The dynamic dialogue between cells and matrices: Implications of fibronectin’s elasticity. Proc Natl Acad Sci USA 1999; 96: 2588-90.
  • 44 Pelletier AJ, van Der Laan LJ, Hildebrand P, Siani MA, Thompson DA, Dawson PE. et al. Presentation of chemokine SDF-1alpha by fibronectin mediates directed migration of T cells. Blood 2000; 96: 2682-90.
  • 45 Blystone SD, Graham IL, Lindberg FP, Brown EJ. Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. J Cell Biol 1994; 127: 1129-37.
  • 46 McCutcheon JC, Hart SP, Canning M, Ross K, Humphries MJ, Dransfield I. Regulation of macrophage phagocytosis of apoptotic neutrophils by adhesion to fibronectin. J Leukoc Biol 1998; 64: 600-7.
  • 47 Globus RK, Doty SB, Lull JC, Holmuhamedov E, Humphries MJ, Damsky CH. Fibronectin is a survival factor for differentiated osteoblasts. J Cell Sci 1998; 111: 1385-93.
  • 48 Bendall LJ, Makrynikola V, Hutchinson A, Bianchi AC, Bradstock KF, Gottlieb DJ. Stem cell factor enhances the adhesion of AML cells to fibronectin and augments fibronectin-mediated anti-apoptotic and proliferative signals. Leukemia 1998; 12: 1375-82.
  • 49 Terui Y, Furukawa Y, Sakai T, Kikuchi J, Sugahara H, Kanakura Y. et al. Up-regulation of VLA-5 expression during monocytic differentiation and its role in negative control of the survival of peripheral blood monocytes. J Immunol 1996; 156: 1981-8.
  • 50 Lundell BI, McCarthy JB, Kovach NL, Verfaillie CM. Activation-dependent α5β1 integrin-mediated adhesion to fibronectin decreases proliferation of chronic myelogenous leukemia progenitors and K562 cells. Blood 1996; 87: 2450-8.
  • 51 Sugahara H, Kanakura Y, Furitsu T, Ishihara K, Oritani K, Ikeda H. et al. Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. J Exp Med 1994; 179: 1757-66.
  • 52 Rose DM, Cardarelli PM, Cobb RR, Ginsberg MH. Soluble VCAM-1 binding to alpha4 integrins is cell-type specific, activation-dependent, and disrupted during apoptosis in T cells. Blood 2000; 85: 602-9.
  • 53 Kitani A, Nakashima N, Matsuda T, Xu B, Yu S, Nakamura T. et al. T cells bound by vascular cell adhesion molecule-1/CD106 in synovial fluid in rheumatoid arthritis. Inhibitory role of soluble vascular cell adhesion molecule-1 in T-cell activation. J Immunol 1996; 156: 2300-8.
  • 54 Crowe DT, Chiu H, Fong S, Weissman IL. Regulation of the avidity of integrin α4β7 by the β7 cytoplasmic domain. J Biol Chem 1994; 269: 14411-8.
  • 55 Pinola M, Saksela E, Tiisala S, Renkonen R. Human NK cells expressing α4β1/β7adhere to VCAM-1 without preactivation. Scand J Immunol 1994; 39: 131-6.
  • 56 Palecek SP, Loftus JC, Ginsberg MH, Horwitz AF, Lauffenburger DA. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997; 385: 537-40.
  • 57 Trinchieri G. Interleukin-12: a proinflammatory cytokine with immuno-regulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13: 251-76.
  • 58 Myers KJ, Eppihimer MJ, Hall L, Wolitzky B. Interleukin-12-induced adhesion molecule expression in murine liver. Am J Pathol 1998; 152: 457-68.
  • 59 Fogler WE, Volker K, Watanabe M, Wigginton JM, Roessler P, Brunda MJ. et al. Recruitment of hepatic NK cells by IL-12 is dependent on IFN-gamma and VCAM-1 and is rapidly down-regulated by a mechanism involving T cells and expression of Fas. J Immunol 1998; 161: 6014-21.
  • 60 Fogler WE, Volker K, McCormick KL, Watanabe M, Ortaldo JR, Wiltrout RH. NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM-1/VLA-4 interaction. J Immunol 1996; 156: 4707-14.
  • 61 Willicome SM, Kapahi P, Mason JC, Lebranchu Y, Yarwood H, Haskard DO. Detection of a circulating form of vascular cell adhesion molecule-1: raised levels in rheumatoid arthritis and systemic lupus erythematosus. Clinic Exper Immunol 2000; 92: 412-8.
  • 62 Kitani A, Nakashima N, Izumihara T, Inagaki M, Baoui X, Yu S. et al. Soluble VCAM-1 induces chemotaxis of jurkat and synovial fluid cells bearing high affinity very late antigen-4. J Immunol 1998; 161: 4931-8.
  • 63 Chan JR, Hyduk SJ, Cybulsky MI. α4β1 integrin/VCAM-1 interaction activates αLβ2 integrin-mediated adhesion to ICAM-1 in human T cells. J Immunol 2000; 164: 746-53.
  • 64 Jakubowski A, Ehrenfels BN, Pepinski RB, Burkly LC. Vascular cell adhesion molecule-Ig fusion protein selectively targets activated α4-integrin receptors in vivo. Inhibition of autoimmune diabetes in an adoptive transfer model in nonobese diabetic mice. J Immunol 1995; 155: 938-46.
  • 65 Altieri DC, Edgington TS. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem 1988; 263: 7007-15.
  • 66 Altieri DC, Wiltse WL, Edgington TS. Signal transduction initiated by extracellular nucleotides regulates the high affinity ligand recognition of the adhesive receptor CD11b/CD18. J Immunol 1990; 145: 662-70.
  • 67 Lollo BA, Chan KW, Hanson EM, Moy VT, Brian AA. Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J Biol Chem 1993; 268: 21693-700.
  • 68 Woska JR, Morelock MM, Jeanfavre DD, Bormann BJ. Characterization of molecular interactions between intercellular adhesion molecule-1 and leukocyte function-associated antigen-1. J Immunol 1996; 156: 4680-5.
  • 69 Reilly PL, Woska JR, Jeanfavre DD, McNally E, Rothlein R, Bormann BJ. The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. J Immunol 1995; 155: 529-32.
  • 70 Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 1995; 182: 1231-41.
  • 71 Weber C, Cha-Fen L, Casasnovas JM, Springer TA. Role of αLβ2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J Immunol 1997; 159: 3968-75.
  • 72 Ganpule G, Knorr R, Miller JM, Carron CP, Dustin ML. Low affinity of cell surface lymphocyte function-associated antigen-1 (LFA-1) generates selectivity for cell-cell interactions. J Immunol 1997; 159: 2685-92.
  • 73 Kotovuori A, Pessa-Morikawa T, Kotovuori P, Nortamo P, Gahmberg CG. ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J Immunol 1999; 162: 6613-20.
  • 74 Du X, Plow EF, Frelinger III AL, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 1991; 65: 409-16.
  • 75 Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 1997; 94: 3909-13.
  • 76 Ginsberg MH, Forsyth J, Lightsey A, Chediak J, Plow EF. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J Clin Invest 1983; 71: 619-24.
  • 77 Plow EF, Ginsberg MH. Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. J Biol Chem 1981; 256: 9477-82.
  • 78 Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb-IIIa complex during platelet activation. J Biol Chem 1985; 260: 11107-14.
  • 79 O’Toole TE, Loftus JC, Du X, Glass AA, Ruggeri ZM, Shattil SJ. et al. Affinity modulation of the αIIbβ3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. CR 1990; 1: 883-93.
  • 80 Bazzoni G, Hemler ME. Are changes in integrin affinity and conformation overemphasized?. Trends Biochem Sci 1998; 23: 30-4.
  • 81 Sims PJ, Ginsberg MH, Plow EF, Shattil SJ. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem 1991; 266: 7345-52.
  • 82 Yan B, Hu DD, Knowles SK, Smith JW. Probing chemical and conformational differences in the resting and active conformers of platelet integrin αIIbβ3. J Biol Chem 2000; 275: 7249-60.
  • 83 Parise LV, Helgerson SL, Steiner B, Nannizzi L, Phillips DR. Synthetic peptides derived from fibrinogen and fibronectin change the conformation of purified platelet glycoprotein IIb-IIIa. J Biol Chem 1987; 262: 12597-602.
  • 84 Hantgan RR, Paumi C, Rocco M, Weisel JW. Effects of ligand-mimetic peptides Arg-Gly-Asp-X (X = Phe, Trp, Ser) on αIIbβ3 integrin conformation and oligomerization. Biochemistry 1999; 38: 14461-74.
  • 85 Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin α2β1. Cell 2000; 101: 47-56.
  • 86 Springer TA. Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA 1997; 94: 65-72.
  • 87 Kamata T, Irie A, Tokuhira M, Takada Y. Critical residues of integrin II subunit for binding of αIIbβ3 (glycoprotein IIb-IIIa) to fibrinogen and ligand-mimetic antibodies (PAC-1, OP-G2, and LJ-CP3). J Biol Chem 1996; 271: 18610-5.
  • 88 Kamata T, Puzon W, Takada Y. Identification of putative ligand-binding sites of the Integrin α4β1 (VLA-4, CD49d/CD29). Biochem J 1995; 305: 945-51.
  • 89 Humphries JD, Askari JA, Zhang XP, Takada Y, Humphries MJ, Mould AP. Molecular basis of ligand recognition by integrin α5β1. II. Specificity of Arg-Gly-Asp binding is determined by Trp157 of the α-subunit. J Biol Chem 2000; 275: 20337-45.
  • 90 Tozer EC, Baker EK, Ginsberg MH, Loftus JC. A mutation in the alpha subunit of the platelet integrin αIIbβ3 identifies a novel region important for ligand binding. Blood 1999; 93: 918-24.
  • 91 Springer TA, Hua J, Takagi J. A novel Ca2+ binding β hairpin loop better resembles integrin sequence motifs than the EF hand. Cell 2000; 102: 275-7.
  • 92 Tuckwell DS, Brass A, Humphries MJ. Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Biochem J 1992; 285: 325-31.
  • 93 Baneres JL, Roquet F, Martin A, Parello J. A minimized human integrin 5 1 that retains ligand recognition. J Biol Chem 2000; 275: 5888-903.
  • 94 Harris ES, McIntyre TM, Prescott SM, Zimmerman GA. The leukocyte integrins. J Biol Chem 2000; 275: 23409-12.
  • 95 Randi AM, Hogg N. I domain of beta 2 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1. J Biol Chem 1994; 269: 12395-8.
  • 96 Michishita M, Videm V, Arnaout MA. A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (Cd11b/CD18) is essential for ligand binding. Cell 1993; 72: 857-67.
  • 97 Leitinger B, Hogg N. Effects of I domain deletion on the function of the beta2 integrin lymphocyte function-associated antigen-1. Mol Biol Cell 2000; 11: 677-90.
  • 98 Yalamanchili P, Lu C, Oxvig C, Springer TA. Folding and function of I domain-deleted Mac-1 and lymphocyte function-associated antigen-1. J Biol Chem 2000; 275: 21877-82.
  • 99 Emsley J, King SL, Bergelson JM, Liddington RC. Crystal structure of the I domain from integrin α2β1 . J Biol Chem 1997; 272: 28512-7.
  • 100 Lee J-O, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A Domain from the α-subunit of integrin CR3 (CD11b/CD18). Cell 1995; 80: 631-8.
  • 101 Qu A, Leahy DJ. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, αLβ2) integrin. Proc Natl Acad Sci USA 1995; 92: 10277-81.
  • 102 Li R, Rieu P, Griffith DL, Scott D, Arnaout MA. Two functional states of the CD11b A-domain: correlations with key features of two Mn2+-complexed crystal structures. J Cell Biol 1998; 143: 1523-34.
  • 103 Frelinger III AL, Lam SC-T, Plow EF, Smith MA, Loftus JC, Ginsberg MH. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263: 12397-402.
  • 104 Frelinger III AL, Du X, Plow EF, Ginsberg MH. Monoclonal antibodies to ligand-occupied conformers of integrin αIIbβ3 (Glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J Biol Chem 1991; 266: 17106-11.
  • 105 Chen Y-P, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP. et al. Ser-752 – Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin IIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-73.
  • 106 Chen Y-P, O’Toole TE, Ylanne J, Rosa J-P, Ginsberg MH. A point mutation in the integrin α3 cytoplasmic domain (S752-P) impairs bidirectional signaling through αIIbβ3 (platelet glycoprotein IIb-IIIa). Blood 1994; 84: 1857-65.
  • 107 O’Toole TE, Katagiri Y, Faull RJ, Peter K, Tamura RN, Quaranta V. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 1994; 124: 1047-59.
  • 108 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of beta3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest 1997; 100: 2393-403.
  • 109 Du X, Gu M, Weisel JW, Nagaswami C, Bennett JS, Bowditch RD. et al. Long range propagation of conformational changes in integrin αIIbβ3. J Biol Chem 1993; 268: 23087-92.
  • 110 Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ. et al. Breaking the integrin hinge: a defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271: 6571-4.
  • 111 Vallar L, Melchior C, Plancon S, Drobecq H, Lippens G, Regnault V. et al. Divalent cations differentially regulate integrin αIIb cytoplasmic tail binding to β3 and to calcium- and integrin-binding protein. J Biol Chem 1999; 274: 17257-66.
  • 112 Vinogradova O, Haas T, Plow EF, Qin J. A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit. Proc Natl Acad Sci USA 2000; 97: 1450-5.
  • 113 Williams MJ, Hughes PE, O’Toole TE, Ginsberg MH. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol 1994; 4: 109-12.
  • 114 Armulik A, Nilsson I, von Heijne G, Johansson S. Determination of the border between the transmembrane and cytoplasmic domains of human integrin subunits. J Biol Chem 1999; 274: 37030-4.
  • 115 Singer SJ. The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol 1990; 6: 247-96.
  • 116 O’Toole TE, Mandelman D, Forsyth J, Shattil SJ, Plow EF, Ginsberg MH. Modulation of the affinity of integrin αIIbβ3 (GPIIb-IIIa) by the cytoplasmic domain of αIIb . Science 1991; 254: 845-7.
  • 117 Kashiwagi H, Schwartz MA, Eigenthaler M, Davis KA, Ginsberg MH, Shattil SJ. Affinity modulation of platelet integrin αIIbβ3 by β3-endonexin, a selective binding partner of the β3 integrin cytoplasmic tail. J Cell Biol 1997; 137: 1433-43.
  • 118 Geiger C, Nagel W, Boehm T, van Kooyk Y, Figdor CG, Kremmer E. et al. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J 2000; 19: 2525-36.
  • 119 Higgins DA. Affinity, avidity and the E-rosette receptor. J Immunol Methods 1984; 72: 305-9.
  • 120 Hughes PE, O’Toole TE, Ylanne J, Shattil SJ, Ginsberg MH. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem 1995; 270: 12411-7.