Hamostaseologie 2010; 30(03): 127-135
DOI: 10.1055/s-0037-1619045
Review
Schattauer GmbH

Arterial thrombus formation

Novel mechanisms and targetsArterielle Thrombusbildung – Neu identifizierteMechanismen und therapeutische Angriffspunkte
I. Hagedorn
1   University of Würzburg, Chair of Vascular Medicine, University Clinic and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Germany
,
T. Vögtle
1   University of Würzburg, Chair of Vascular Medicine, University Clinic and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Germany
,
B. Nieswandt
1   University of Würzburg, Chair of Vascular Medicine, University Clinic and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
26 December 2017 (online)

Summary

Platelet and coagulation factor-dependent thrombus formation is critical to limit post-traumatic blood loss at sites of vascular injury. However, under pathological conditions like rupture of an atherosclerotic plaque, it may also lead to vessel occlusion causing myocardial infarction or stroke. Therefore, antithrombotic treatment is the prime therapeutic option in the prophylaxis and treatment of ischaemic cardio- and cerebrovascular diseases. The use of existing antithrombotic agents is, however, limited by their inherent effect on primary haemostasis. In recent years, major advances have been made in understanding the mechanisms of thrombus formation in haemostasis and thrombosis and some studies raised the interesting possibility that occlusive thrombus formation and haemo stasis may involve partially different mechanisms. This review briefly summarizes these developments and highlights newly identified mechanisms involved in platelet adhesion and activation, intracellular calcium signaling, integrin activation and initiation of coagulation. The suitability of these pathways as novel targets for antithrombotic therapy is discussed.

Zusammenfassung

Thrombozyten- und Koagulationsfaktor-abhängige Thrombusbildung ist essenziell um Blutungen nach einer Gefäßverletzung zu stoppen. Unter pathologischen Bedingungen hingegen, wie beispielsweise der Ruptur einer atherosklerotischen Plaque, kann sie auch zu einem Gefäßverschluss und damit zu Herzinfarkt oder Schlaganfall führen. Daher stellen antithrombotische Wirkstoffe die erste therapeutische Wahl in der Prophylaxe und Behandlung von ischämischen kardio- und zerebrovaskulären Erkrankungen dar. Die Anwendung existierender antithrombotischer Arzneimittel ist allerdings durch deren gleichzeitige Wirkung auf die primäre Hämostase begrenzt. In den letzten Jahren wurden große Fortschritte im Verständnis der Mechanismen der Thrombusbildung in Hämostase und Thrombose erzielt. Einige Studien deuten darauf hin, dass okklusiver Thrombusbildung und Hämostase teilweise unterschiedliche Mechanismen zu Grunde liegen. Dieser Übersichtsartikel fasst kurz diese Entwicklungen zusammen und hebt neu identifizierte Mechanismen der Thrombozyten-adhäsion und –aktivierung, den intrazellulären Kalzium-Signalwegen, der Integrinaktivierung, sowie dem Einsetzen der Koagulation hervor. Die Eignung dieser Signalwege als Angriffspunkte für eine antithrombotische Therapie wird ebenfalls diskutiert.

 
  • References

  • 1 Abdullaev IF, Bisaillon JM, Potier M. et al. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008; 103: 1289-1299.
  • 2 Adams Jr HP, Effron MB, Torner J. et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke 2008; 39: 87-99.
  • 3 Bergmeier W, Goerge T, Wang HW. et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117: 1699-1707.
  • 4 Bergmeier W, Oh-Hora M, McCarl CA. et al. R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood 2009; 113: 675-678.
  • 5 Bergmeier W, Piffath CL, Goerge T. et al. The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 2006; 103: 16900-16905.
  • 6 Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 04: 517-529.
  • 7 Bertozzi CC, Schmaier AA, Mericko P. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010 doi 10.1182/blood-2010–02–270876.
  • 8 Beyersdorf N, Braun A, Vogtle T. et al. STIM1-independent T cell development and effector function in vivo. J Immunol 2009; 182: 3390-3397.
  • 9 Braun A, Gessner JE, Varga-Szabo D. et al. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 2009; 113: 1097-1104.
  • 10 Braun A, Varga-Szabo D, Kleinschnitz C. et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009; 113: 2056-2063.
  • 11 Calderwood DA, Yan B, de Pereda JM. et al. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 2002; 277: 21749-21758.
  • 12 Chaipan C, Soilleux EJ, Simpson P. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80: 8951-8960.
  • 13 Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM. et al. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 2005; 115: 680-687.
  • 14 Cifuni SM, Wagner DD, Bergmeier W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 2008; 112: 1696-1703.
  • 15 Crittenden JR, Bergmeier W, Zhang Y. et al. Cal-DAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004; 10: 982-986.
  • 16 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 1964; 145: 1310-1312.
  • 17 Decrem Y, Rath G, Blasioli V. et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J Exp Med 2009; 206: 2381-2395.
  • 18 Elvers M, Pozgaj R, Pleines I. et al. Platelet hyperreactivity and a prothrombotic phenotype in mice with a gain-of-function mutation in phospholipase Cgamma2. J Thromb Haemost. 2010 doi 10.1111/j.1538-7836.2010.03838.x.
  • 19 Elvers M, Stegner D, Hagedorn I. et al. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 2010; 03: ra1.
  • 20 Falati S, Edmead CE, Poole AW. Glycoprotein Ib-V-IX, a receptor for von Willebrand factor, couples physically and functionally to the Fc receptor gamma-chain, Fyn, and Lyn to activate human platelets. Blood 1999; 94: 1648-1656.
  • 21 Feske S. CRAC channelopathies. Pflugers Arch 2010; 460: 417-435.
  • 22 Feske S, Gwack Y, Prakriya M. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441: 179-185.
  • 23 Fuller GL, Williams JA, Tomlinson MG. et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282: 12397-12409.
  • 24 Girolami A, Randi ML, Gavasso S. et al. The occasional venous thromboses seen in patients with severe (homozygous) FXII deficiency are probably due to associated risk factors: a study of prevalence in 21 patients and review of the literature. J Thromb Thrombolysis 2004; 17: 139-143.
  • 25 Grosse J, Braun A, Varga-Szabo D. et al. An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 2007; 117: 3540-3550.
  • 26 Gruner S, Prostredna M, Aktas B. et al. Antiglycopro tein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 2004; 110: 2946-2951.
  • 27 Gruner S, Prostredna M, Schulte V. et al. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 2003; 102: 4021-4027.
  • 28 Gwack Y, Srikanth S, Oh-Hora M. et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 2008; 28: 5209-5222.
  • 29 Hagedorn I, Schmidbauer S, Pleines I. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 2010; 121: 1510-1517.
  • 30 Hathaway DR, Adelstein RS. Human platelet myosin light chain kinase requires the calciumbinding protein calmodulin for activity. Proc Natl Acad Sci USA 1979; 76: 1653-1657.
  • 31 Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost 2002; 88: 186-193.
  • 32 Heemskerk JW, Vuist WM, Feijge MA. et al. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 1997; 90: 2615-2625.
  • 33 Holtkotter O, Nieswandt B, Smyth N. et al. Integrin alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem 2002; 277: 10789-10794.
  • 34 Hughes CE, Pollitt AY, Mori J. et al. CLEC-2 activates Syk through dimerisation. Blood 2010; 115: 2947-2955.
  • 35 Kawasaki H, Springett GM, Toki S. et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc Natl Acad Sci USA 1998; 95: 13278-13283.
  • 36 Kerrigan AM, Dennehy KM, Mourao-Sa D. et al. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009; 182: 4150-4157.
  • 37 Kleinschnitz C, De Meyer SF, Schwarz T. et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 2009; 113: 3600-3603.
  • 38 Kleinschnitz C, Pozgajova M, Pham M. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115: 2323-2330.
  • 39 Kleinschnitz C, Stoll G, Bendszus M. et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203: 513-518.
  • 40 Lecut C, Schoolmeester A, Kuijpers MJ. et al. Principal role of glycoprotein VI in alpha2beta1 and alphaIIbbeta3 activation during collagen-induced thrombus formation. Arterioscler Thromb Vasc Biol 2004; 24: 1727-1733.
  • 41 Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 2003; 42: 423-438.
  • 42 Liou J, Kim ML, Heo WD. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15: 1235-1241.
  • 43 Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as biochemical amplifier. Nature 1964; 202: 498-499.
  • 44 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24: 1015-1022.
  • 45 Malinin NL, Zhang L, Choi J. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15: 313-318.
  • 46 Massberg S, Gawaz M, Gruner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-49.
  • 47 May F, Hagedorn I, Pleines I. et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009; 114: 3464-3472.
  • 48 Mazzucato M, Pradella P, Cozzi MR. et al. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 2002; 100: 2793-2800.
  • 49 McCarl CA, Picard C, Khalil S. et al. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 2009; 124: 1311-1318.
  • 50 McDermott M, Wakelam MJ, Morris AJ. Phospholipase D. Biochem Cell Biol 2004; 82: 225-253.
  • 51 Meves A, Stremmel C, Gottschalk K, Fassler R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol 2009; 19: 504-513.
  • 52 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 2010; 09: 154-169.
  • 53 Moser M, Nieswandt B, Ussar S. et al. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14: 325-330.
  • 54 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139: 1143-1156.
  • 55 Munnix IC, Kuijpers MJ, Auger J. et al. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27: 2484-2490.
  • 56 Nesbitt WS, Kulkarni S, Giuliano S. et al. Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 2002; 277: 2965-2972.
  • 57 Nesbitt WS, Westein E, Tovar-Lopez FJ. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15: 665-673.
  • 58 Nieswandt B, Bergmeier W, Rackebrandt K. et al. Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood 2000; 96: 2520-2527.
  • 59 Nieswandt B, Bergmeier W, Schulte V. et al. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRgamma chain. J Biol Chem 2000; 275: 23998-24002.
  • 60 Nieswandt B, Brakebusch C, Bergmeier W. et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001; 20: 2120-2130.
  • 61 Nieswandt B, Moser M, Pleines I. et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204: 3113-3118.
  • 62 Nieswandt B, Schulte V, Bergmeier W. et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 2001; 193: 459-469.
  • 63 Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost 2009; 07 (Suppl. 01) 206-299.
  • 64 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102: 449-461.
  • 65 Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99: 1293-1304.
  • 66 Oh-Hora M, Yamashita M, Hogan PG. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 2008; 09: 432-443.
  • 67 Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC. Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost 2005; 03: 1745-1751.
  • 68 Parekh AB, Putney Jr JW. Store-operated calcium channels. Physiol Rev 2005; 85: 757-810.
  • 69 Petrich BG, Marchese P, Ruggeri ZM. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204: 3103-3111.
  • 70 Picard C, McCarl CA, Papolos A. et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009; 360: 1971-1980.
  • 71 Pleines I, Eckly A, Elvers M. et al. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood 2010; 115: 3364-3373.
  • 72 Pollitt AY, Grygielska B, Leblond B. et al. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerisation, secondary mediators and Rac. Blood 2010; 115: 2238-2946.
  • 73 Quinn MJ, Byzova TV, Qin J. et al. Integrin alphaIIbbeta3 and its antagonism. Arterioscler Thromb Vasc Biol 2003; 23: 945-952.
  • 74 Rabie T, Varga-Szabo D, Bender M. et al. Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood 2007; 110: 529-535.
  • 75 Ratnoff OD, Colopy JE. A familial hemorrhagic trait associated with a deficiency of a clotpromoting fraction of plasma. J Clin Invest 1955; 34: 602-613.
  • 76 Renne T, Pozgajova M, Gruner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271-281.
  • 77 Rink TJ, Smith SW, Tsien RY. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett 1982; 148: 21-26.
  • 78 Roos J, DiGregorio PJ, Yeromin AV. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169: 435-445.
  • 79 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 08: 1227-1234.
  • 80 Savage B, mus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-666.
  • 81 Schuhmann MK, Stegner D, Berna-Erro A. et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 2010; 184: 1536-1542.
  • 82 Schulte V, Rabie T, Prostredna M. et al. Targeting of the collagen-binding site on glycoprotein VI is not essential for in vivo depletion of the receptor. Blood 2003; 101: 3948-3952.
  • 83 Schulte V, Reusch HP, Pozgajova M. et al. Two-phase antithrombotic protection after antiglycoprotein VI treatment in mice. Arterioscler Thromb Vasc Biol 2006; 26: 1640-1647.
  • 84 Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104: 1606-1615.
  • 85 Stefanini L, Roden RC, Bergmeier W. CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood 2009; 114: 2506-2514.
  • 86 Stiber J, Hawkins A, Zhang ZS. et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 2008; 10: 688-697.
  • 87 Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555-3562.
  • 88 Suzuki-Inoue K, Fuller GL, Garcia A. et al. A novel Syk-ependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107: 542-549.
  • 89 Suzuki-Inoue K, Kato Y, Inoue O. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282: 25993-26001.
  • 90 Svensson L, Howarth K, McDowall A. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15: 306-312.
  • 91 Tadokoro S, Shattil SJ, Eto K. et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302: 103-106.
  • 92 Uhrin P, Zaujec J, Breuss JM. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115: 4997-4005.
  • 93 Van der Meijden PE, Munnix IC, Auger JM. et al. Dual role of collagen in factor XII-dependent thrombus formation. Blood 2009; 114: 881-890.
  • 94 Varga-Szabo D, Authi KS, Braun A. et al. Store-operated Ca(2+) entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 2008; 457: 377-387.
  • 95 Varga-Szabo D, Braun A, Kleinschnitz C. et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 2008; 205: 1583-1591.
  • 96 Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost 2009; 07: 1057-1066.
  • 97 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 98 Vig M, DeHaven WI, Bird GS. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 2008; 09: 89-96.
  • 99 Vig M, Peinelt C, Beck A. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312: 1220-1223.
  • 100 Watson SP, Asazuma N, Atkinson B. et al. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost 2001; 86: 276-288.
  • 101 Wu Y, Asazuma N, Satoh K. et al. Interaction between von Willebrand factor and glycoprotein Ib activates Src kinase in human platelets: role of phosphoinositide 3-kinase. Blood 2003; 101: 3469-3476.
  • 102 Yap CL, Anderson KE, Hughan SC. et al. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 2002; 99: 151-158.
  • 103 Zhang SL, Yeromin AV, Zhang XH. et al. Genomewide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 2006; 103: 9357-9362.