Hamostaseologie 2012; 32(S 01): S52-S61
DOI: 10.1055/s-0037-1619777
Originalartikel
Schattauer GmbH

Hämophilie und Knorpel

Die Rolle der BewegungHaemophilia and cartilageThe role of movement
A. Seuser
1   Orthopädische Abteilung, Kaiser-Karl-Klinik, Bonn
› Author Affiliations
Further Information

Publication History

Eingegangen: 23 March 2012

angenommen: 13 July 2012

Publication Date:
28 December 2017 (online)

Summary

It is not the blood alone! Increased loading destroys cartilage and leads to arthrosis. Reduced mechanical stimulation leads to reduced cartilage nutrition and to cartilage degeneration, which leads to arthrosis. We know about the existence of functional disturbances that occur in early childhood before any structural changes are diagnosed. This is typical for haemophilia. Those disturbances and the way movement is disturbed has a strong influence on the loading of cartilage. This involves acceleration peaks, disturbed load distribution with reduction of contact area and a change of vector direction, which leads to increased cartilage loading. The disturbed function can be analysed very early with motion analysis. Easy physiotherapeutical interventions are able to optimise function again. On top of that we have a loss of muscle contraction pattern. Around the knee joint it is the weakening of the vastus medialis and the shortening of the knee flexors. The ankle joint suffers from a weakening of the tibialis anterior and a shortening of the calf muscles. During progression of the disease there will be a shortening of the weakened muscle and a weakening of the shortened muscle as well. Kinetic superficial EMG is able to quantify the status of the muscles and enables us to prescribe an individual therapy. Subclinical influences like microbleeds, in the beginning silent synovitis, later chronic synovitis, silent symptoms and overprotection are the cause of the functional overloading of the cartilage in patient with haemophilia. Silent symptoms can be discovered by clinical examination. Again this leads to the opportunity of a symptomatic therapeutic approach. All those facts could be the reason why there is an increasing incidence of haemarthrophathy of the ankle joint, even in patients with mild haemophilia in spite of adequate factor substitution.

Zusammenfassung

Es ist nicht nur das Blut allein! Verstärkte biomechanische Belastung zerstört Knorpel und führt zu Arthrose. Selbst reduzierte mechanische Stimulation vermindert die Knorpelernährung und triggert die Degeneration und führt so zu Arthrose. Wir wissen, dass es Bewegungsstörungen im frühen Kindesalter gibt, die vor den strukturellen Störungen auftreten und typisch für die Hämophilie sind. Diese Bewegungsstörungen haben Einfluss auf die Knorpelbelastung. Dazu gehören Beschleunigungsspitzen, gestörte Lastverteilungen, hier insbesondere die Reduktion der Kontaktflächen und Änderung der Kraftrichtung. Diese führen zu einer deutlich vermehrten Knorpelbelastung. Fehlbewegungen können frühzeitig durch eine Bewegungsanalyse erkannt und dann durch einfache Therapiemaßnahmen mit Hilfe krankengymnastischer Behandlung angegangen werden. Nachgewiesenermaßen kommt es auch zum Verlust der Muskelkontraktionsmuster. Am Knie ist es die Abschwächung des Vastus medialis und die Verkürzung der Beinbeugemuskulatur, am Sprunggelenk die Abschwächung des Tibialis anterior und die Verkürzung der Wadenmuskulatur, später auch die Verkürzung der abgeschwächten Muskulatur und die Abschwächung der verkürzten Muskulatur. Dies ist mit EMG nachweisbar und kann dann einer entsprechenden Therapie zugeführt werden. Subklinische Einflüsse wie Mikroblutungen, Synovitis, stille Symptome und Überprotektion sind die Ursache für die funktionelle Fehlbelastung des Knorpels bei Hämophilie. Hier können genaue klinische Untersuchungen mithelfen, diese zu erkennen und die notwendige Therapie und damit Prävention einzuleiten und zu steuern. Alle Fakten zusammen könnten erklären, warum trotz adäquater Faktorgabe eine zunehmende Inzidenz von Hämarthropathien am Sprunggelenk, auch bei milder Hämophilie, zu beobachten sind.

 
  • Literatur

  • 1 Nigg BM, Herzog W. (Hrsg). Biomechanics of the Musculo-skeletal System Chichester: Wiley. 2006
  • 2 Chaudhari MW, Briant PL, Bevill SL. et al. Knee Kinematics, Cartilage Morphology, and Osteoarthritis after ACL Injury. Med Sci Sports Exerc 2008; 40: 215-222.
  • 3 Clark AL, Barclay LD, Mathyas Jr, Herzog W. Insitu-chondroside deformation with physiological compression of the feline patello-femoral joint. J Biomech 2003; 36: 553-568.
  • 4 Eckstein F, Lemberger B, Kratzke C. et al. In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum 2005; 64: 291-295.
  • 5 Friderico S, Herzog W, Wu JZ, La GRosa. The effect of fluid boundery conditions on joint contact mechanics and applications to the modelling of osteoarthritic joints. J Biomech Eng 2004; 126: 220-225.
  • 6 Greenwald AS, O’Connor JJ. The transmission of low through the human hip joint. J Biomech 1971; 04: 507-528.
  • 7 Guilac F, Redkliffe A, Mow VC. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J Orthop Res 1995; 13: 410-421.
  • 8 Hunziker E. Articular cartilage structure in humans and experimental animals. In: Peyron KE, Schleyerback JG, Hascall VC. (Hrsg). Articular cartilage and osteoarthritis: 183–199. New York: Raven Press; 1992
  • 9 Jansen NWD, Rosendaal G, Bijilsma JWJ. et al. Exposure of human cartilage tissue to low concentrations of blood for a short period of time leads to prolonged cartilage damage. An in-vitro study. Arthritis Rheum 2007; 56: 199-207.
  • 10 Kandel E, Schwartz J, Jessel T. (Hrsg). Principles of neural sciences. New York: McGraw-Hill Medical; 2000
  • 11 Kempson GE, Moir IHM, Pollard C, Tuke M. The tenside properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochem Biophys Acta 1973; 297: 456-472.
  • 12 Ling M, Eysen JPH, Duncan EM. et al. High incidence of ankle arthropathy in mild and moderate haemophilia. Thromb Haemost 2011; 105: 261-268.
  • 13 Little CB, Gosh P, Rose R. The effect of strenuous versus moderate exercise on the metabolism of proteoglycans in articular cartilage from different weight bearing regions of the equine 3rd carpal bone. Osteoarthitis Cartilage 1997; 05: 161-172.
  • 14 Lobet S, Detrembleur C, Francq B, Hermans C. Natural progression of blood-induced joint damage in patients with haemophilia: Clinical relevants and reproducibility of three dimensional gate analysis. Haemophilia 2010; 16: 813-821.
  • 15 Manco-Johnson MJ, Abshire TC, Shapiro AD. et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 2007; 357: 535-544.
  • 16 Mundermann A, Dyrby CO, Andriachi TP, King KB. Serum concentration of cartilage, oligomeric proteine (COMP) is sensitive to physiological cyclic loading in healthy adults. Osteoarthitis Cartilage 2005; 13: 34-38.
  • 17 Petrini P, Seuser A. Haemophilia care in adolescents – compliance and lifestyle issues. Haemophilia 2009; 15: 15-19.
  • 18 Sah RL, Young AS, Chen AC. et al. Physical properties of rabbit articular cartilage after transsection of the ACL. J Orthop Res 1997; 15: 197-203.
  • 19 Selfe J, Whitaker J, Hardaker N. A narrative literature review identifying the minimum clinically important difference for skin temperature asymmetry at the knee. Thermol Int 2008; 18: 41-44.
  • 20 Seuser A, Wallny T, Schumpe G. et al. Biomechanical Research in Haemophilia. In: Rodriguez-Merchan EC, Goddard NJ, Lee CA. (eds). Musculoskeletal Aspects of Haemophilia: Blackwell Science; 2000: 27-36.
  • 21 Seuser A, Böhm P, Kurme A. et al. Orthopaedic issues in sports for persons with haemophilia. Haemophilia 2007; 13: 47-52.
  • 22 Seuser A, Schumpe G, Schuhmacher M. et al. Haemophilia and knee function. Hämostaseologie 2009; 29: 69-73.
  • 23 Song Y, Greve JM, Carter DR. et al. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy-Osteoarthritis Cartilage. 2006; 14: 728-737.
  • 24 Stephensen D, Drechsler W, Winter M, Scott O. Comparison of biomechanical gate parameters of young children with haemophilia and those of agematched peers. Haemophilia 2009; 15: 509-518.
  • 25 Street A, Hill K, Sussex B. et al. Haemophilia and ageing. Haemophilia 2006; 12: 8-12.
  • 26 Teschima R, Ozuka T, Takasu N. et al. Structure of the most superficial layer of articular cartilage. J Bone Joint Surg BR 1995; 77: 460-464.
  • 27 Tiktinsky R, Falk B, Heim M, Martinovitz U. The effect of resistance training on the frequency of bleeding in haemophilia patients: a pilot study. Haemophilia 2002; 08: 22-27.
  • 28 Van Meegeren M. Update on pathogenesis of the bleeding joint: An interplay between flammatory and degenerative pathways. Haemophilia 2010; 16: 121-123.
  • 29 Van de Velde SK, Bingham TJeffrey, Hosseini A. et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum 2009; 60: 3693-3702.
  • 30 Whiteside RA, Jakob RP, Wyss UP. et al. Impact loading of articular cartilage transplantation of osteochondral orthograph. J Bone Joint Surg BR 2005; 87: 1285-1289.