Osteologie 2010; 19(02): 105-110
DOI: 10.1055/s-0037-1619929
Sexualhormone und Knochenstoffwechsel
Schattauer GmbH

Sexualsteroide in der Homöostase des Knochens

The effects of sex hormones on bone homeostasis
F. Jakob
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
P. Benisch
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
B. Klotz
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
L. Seefried
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
B. Mentrup
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
N. Raaijmakers
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
R. Ebert
1   Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik, König-Ludwig Haus, Universität Würzburg
,
L. C. Hofbauer
2   Medizinische Klinik III, Bereich Endokrinologie, Diabetes und Knochenstoffwechselerkrankungen, Universitätsklinikum der Technischen Universität Dresden
› Author Affiliations
Further Information

Publication History

eingereicht: 13 December 2009

angenommen: 14 February 2010

Publication Date:
30 December 2017 (online)

Zusammenfassung

Die Sexualhormone Östradiol und Dihydrotestosteron spielen eine herausragende Rolle für die Entwicklung, das Wachstum und die Regeneration des Knochens. Molekulare Grundlage der Wirkung von Sexualhormonen auf den Knochen ist die Expression spezifischer Rezep - torproteine in Knochenzellen selbst und in Organen, die den Knochen beeinflussen. Neben den klassischen Östrogenrezeptoren (ER) und Androgenrezeptoren (AR) gibt es auch membranassoziierte Rezeptoren wie den kürzlich entdeckten G-Protein-gekoppelten Rezeptor 30 (GPR30, GPER), der ebenfalls Östrogene bindet. Sexualhormone sind pleiotrop, direkte und indirekte Auswirkungen von Sexualhormonen auf die Knochenhomöostase sind jedoch oft schwer voneinander zu trennen. Zudem können Knochenzellen selbst Sexualhormone aktivieren oder abbauen, indem sie Enzyme des Steroid-Metabolismus exprimieren. Testo - steron ist das Vorläufer steroid für beide Sexualhormone und kann durch die beiden Schlüsselenzyme Aromatase und 5⟨-Reduktase jeweils in Östradiol oder 5α-Dihydrotestosteron umgewandelt werden. Die vielfältigen Ebenen der Regulation lassen sich für die klinische Praxis so zusammenfassen, dass ihre Hauptwirkung darin besteht, die Anzahl und die Aktivität von Osteoklasten zu regulieren und die Knochenformation zu unterstützen. Der Verlust von Sexualhormonen bedingt Knochenverlust durch gesteigerten Abbau. Dies wird durch Beeinflussung des OPG/RANKL-Quotienten erreicht (AR und ER) und durch Regulation der Produktion des Apoptose-induzierenden Fas-Liganden in Osteoklasten (ER). Sexualhormone unterstützen die Knochenformation auf vielen Ebenen, vor allem fördern Östrogene die Mechanosensitivität. Für die Prävention und Therapie des Knochenverlusts ergeben sich daher unverändert therapeutische Perspektiven durch die Entwicklung von selektiven Rezeptormodulatoren für beide Rezeptorsysteme (SERMs und SARMs). Auch die lokale Hormonaktivierung im Knochen kann zukünftig Ziel therapeutischer Maßnahmen werden, sei es durch die einfache Gabe von Steroidhormonvorläufern, die lokal gewebespezifisch aktiviert werden, oder durch Kleinmoleküle, die das Muster des lokalen Steroidmetabolismus modulieren.

Summary

Estradiol and dihydrotestosterone, the principal hormonal sex steroids, are important for the development, growth and regeneration of bone. The expression of the respective receptor proteins in bone cells and in the organs which influence bone homeostasis represents the molecular basis for sex steroid effects on bone. In addition to the classical estrogen receptors (ER) and androgen receptors (AR), which act as transcription factors, also membrane-associated receptors have been characterized, like the recently discovered estrogen binding G-protein coupled receptor 30 (GPR30, GPER). Due to the pleio tropic actions of sex hormones it is difficult to dissect their direct and indirect effects on bone homeostasis. Moreover, bone cells themselves can activate or metabolize sex steroids by expressing the respective enzymes of steroid metabolism. Testosterone is a precursor for both sex steroids and can be converted into estradiol or 5α-dihydrotestosterone by the key activating enzymes aromatase and 5α-reductase respectively. The multifaceted levels of regulation can be summarised for clinical practice as two main effects of sex steroids on bone, which are to regulate the number and activity of osteoclasts and to support bone formation by osteoblasts. Loss of sex steroid activity causes bone loss, which is mediated by negatively influencing the OPG/RANKL ratio (ER and AR) and by up-regulation of the expression of the apoptosis inducing Fas-ligand in both osteoblasts and osteoclasts (ER). Sex steroids facilitate bone formation on multiple levels, the most important of which may be the mechanosensitizing effect of estradiol and ERα. Hence the field of sex steroids still provides promising targets for the development of therapeutic strategies in the prevention and therapy of bone loss, such as the development of selective receptor modulators for ER and AR (SERMs and SARMs). Local steroid metabolism in bone cells can also be used and targeted in future, e. g. by simply adding steroid hormone precursors which are locally activated in a tissue-specific manner, or by stimulating the local expression of steroid metabolizing enzymes to create a favourable steroid microenvironment.

 
  • Literatur

  • 1 Adamski J, Jakob FJ. A guide to 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2001; 171: 1-4.
  • 2 Aguirre JI, Plotkin LI, Gortazar AR. et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 2007; 282: 25501-25508.
  • 3 Arana-Chavez VE, Bradaschia-Correa V. Clastic cells: mineralized tissue resorption in health and disease. Int J Biochem Cell Biol 2009; 41: 446-450.
  • 4 Boyce BF, Yao Z, Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr 2009; 19: 171-180.
  • 5 Callewaert F, Bakker A, Schrooten J. et al. Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. J Bone Miner Res 2010; 25 (01) 124-131.
  • 6 Callewaert F, Boonen S, Vanderschueren D. Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol Metab 2010; 21 (02) 89-95 [Epub 2009 Oct 17].
  • 7 Callewaert F, Venken K, Ophoff J. et al. Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-alpha. FASEB J 2009; 23: 232-240.
  • 8 Chiang C, Chiu M, Moore AJ. et al. Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res 2009; 24: 621-631.
  • 9 Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 2007; 08: 289-300.
  • 10 Higano CS. Androgen-deprivation-therapy-induced fractures in men with nonmetastatic prostate cancer: what do we really know?. Nat Clin Pract Urol 2008; 05: 24-34.
  • 11 Hofbauer LC, Kuhne CA, Viereck V. The OPG/ RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 2004; 04: 268-275.
  • 12 Huber C, Collishaw S, Mosley JR. et al. Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int 2007; 81: 139-144.
  • 13 Imai Y, Kondoh S, Kouzmenko A, Kato S. Regulation of bone metabolism by nuclear receptors. Mol Cell Endocrinol 2009; 310: 3-10.
  • 14 Imai Y, Youn MY, Kondoh S. et al. Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts. Ann N Y Acad Sci 2009; 1173 (Suppl. 01) E31-E39.
  • 15 Issa S, Schnabel D, Feix M. et al. Human osteoblastlike cells express predominantly steroid 5alpha-reductase type 1. J Clin Endocrinol Metab 2002; 87: 5401-5407.
  • 16 Jakob F, Homann D, Seufert J. et al. Expression and regulation of aromatase cytochrome P450 in THP 1 human myeloid leukaemia cells. Mol Cell Endocrinol 1995; 110: 27-33.
  • 17 Jakob F, Seefried L, Ebert R. Pathophysiology of bone metabolism. Internist (Berl) 2008; 49: 1159-1160 1162, 1164 passim.
  • 18 Jakob F, Siggelkow H, Homann D. et al. Local estradiol metabolism in osteoblast-and osteoclast-like cells. J Steroid Biochem Mol Biol 1997; 61: 167-174.
  • 19 Kassem M, Abdallah BM, Saeed H. Osteoblastic cells: differentiation and trans-differentiation. Arch Biochem Biophys 2008; 473: 183-187.
  • 20 Kearbey JD, Gao W, Fisher SJ. et al. Effects of selective androgen receptor modulator (SARM) treatment in osteopenic female rats. Pharm Res 2009; 26 (11) 2471-2477 [Epub 2009; Sep 1].
  • 21 Krum SA, Miranda-Carboni GA, Hauschka PV. et al. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 2008; 27: 535-545.
  • 22 Lin BC, Suzawa M, Blind RD. et al. Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res 2009; 69: 5415-5423.
  • 23 Martensson UE, Salehi SA, Windahl S. et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 2009; 150: 687-698.
  • 24 Martin-Millan M, Almeida M, Ambrogini E. et al. The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 2010; 24 (02) 323-334 [Epub 2010 Jan 6].
  • 25 Mizrachi D, Auchus RJ. Androgens, estrogens, and hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301: 37-42.
  • 26 Mochizuki S, Yoshida S, Yamanaka Y. et al. Effects of estriol on proliferative activity and expression of insulinlike growth factor-I (IGF-I) and IGF-I receptor mRNA in cultured human osteoblast-like osteosarcoma cells. Gynecol Endocrinol 2005; 20: 6-12.
  • 27 Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301: 7-19.
  • 28 Monroe DG, Getz BJ, Johnsen SA. et al. Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ERalpha or ERbeta. J Cell Biochem 2003; 90: 315-326.
  • 29 Nicks KM, Perrien DS, Akel NS. et al. Regulation of osteoblastogenesis and osteoclastogenesis by the other reproductive hormones, Activin and Inhibin. Mol Cell Endocrinol 2009; 310: 11-20.
  • 30 Ophoff J, Callewaert F, Venken K. et al. Physical activity in the androgen receptor knockout mouse: evidence for reversal of androgen deficiency on cancellous bone. Biochem Biophys Res Commun 2009; 378: 139-144.
  • 31 Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol 2008; 252: 68-80.
  • 32 Pandey DP, Lappano R, Albanito L. et al. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 2009; 28: 523-532.
  • 33 Pant S, Shapiro CL. Aromatase inhibitor-associated bone loss: clinical considerations. Drugs 2008; 68: 2591-2600.
  • 34 Proell V, Xu H, Schuler C. et al. Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 2009; 45: 677-681.
  • 35 Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 2009; 308: 32-38.
  • 36 Rochira V, Carani C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol 2009; 05: 559-568.
  • 37 Santen RJ, Brodie H, Simpson ER. et al. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 2009; 30: 343-375.
  • 38 Sillat T, Pollanen R, Lopes JR. et al. Intracrine androgenic apparatus in human bone marrow stromal cells. J Cell Mol Med 2009; 13 (9B): 3296-3302 [Epub 2009 Feb 27].
  • 39 Sipos W, Pietschmann P, Rauner M. et al. Pathophysiology of osteoporosis. Wien Med Wochenschr 2009; 159: 230-234.
  • 40 Sjogren K, Lagerquist M, Moverare-Skrtic S. et al. Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J Bone Miner Res 2009; 24: 1263-1270.
  • 41 Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19: 1-46.
  • 42 Vandenput L, Ohlsson C. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 2009; 05: 437-443.
  • 43 Vanderschueren D, Gaytant J, Boonen S, Venken K. Androgens and bone. Curr Opin Endocrinol Diabetes Obes 2008; 15: 250-254.
  • 44 Venken K, Callewaert F, Boonen S, Vanderschueren D. Sex hormones, their receptors and bone health. Osteoporos Int 2008; 19: 1517-1525.
  • 45 Vico L, Vanacker JM. Sex hormones and their receptors in bone homeostasis: insights from genetically modified mouse models. Osteoporos Int 2010; 21 (03) 365-372 [Epub 2009 Jun 3].
  • 46 Wang L, Wang YD, Wang WJ, Li DJ. Differential regulation of dehydroepiandrosterone and estrogen on bone and uterus in ovariectomized mice. Osteoporos Int 2009; 20: 79-92.
  • 47 Windahl SH, Andersson N, Chagin AS. et al. The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. Am J Physiol Endocrinol Metab 2009; 296: E490-496.
  • 48 Wiren KM, Semirale AA, Hashimoto JG, Zhang XW. Signaling pathways implicated in androgen regulation of endocortical bone. Bone 2010; 46 (03) 710-723 [Epub 2009 Nov 4].
  • 49 Wiren KM, Semirale AA, Zhang XW. et al. Targeting of androgen receptor in bone reveals a lack of androgen anabolic action and inhibition of osteogenesis: a model for compartment-specific androgen action in the skeleton. Bone 2008; 43: 440-451.
  • 50 Zaman G, Jessop HL, Muzylak M. et al. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 2006; 21: 1297-1306.