Subscribe to RSS
DOI: 10.1055/s-0037-1622016
Effekte der Glukokortikoide auf den Knochen
Glucocorticoid effects on bonePublication History
eingereicht:
18 June 2014
angenommen:
20 June 2014
Publication Date:
02 January 2018 (online)

Zusammenfassung
Glukokortikoide sind potente Modulatoren des Immunsystems mit antientzündlicher und immunsuppressiver Wirkung. Seit ihrer Einführung in die klinische Medizin werden Glukokortikoide sehr breit angewandt und kommen sowohl in sehr niedrigen bis sehr hohen Dosierungen zum Einsatz. Trotz der vielen positiven Eigenschaften der Glukokortikoide ist ihre Anwendung vor allem in höheren Dosierungen oft durch zahlreiche Nebenwirkungen gekennzeichnet. Eine typische unerwünschte Wirkung einer solchen Therapie ist die glukokortikoidinduzierte Osteoporose, die die häufigste sekundäre Osteoporoseform darstellt. In den vergangenen Jahren konnte das Wissen über die Glukokortikoidwirkungen auf den Knochen deutlich erweitert werden. Es wurde klar, dass Glukokortikoide dosis- und zeitabhängig sehr verschiedene Wirkungen auf dieses System haben. Während Glukokortikoide in physiologischer Konzentration eine regulatorische Wirkung auf die Osteoblastogenese haben und so die Knochenbildung begünstigen, sind ihre Auswirkungen in pharmakologischer Dosierung nahezu konträr. In diesem Beitrag geben wir einen Überblick über physiologische und pathophysiologische Glukokortikoideffekte auf den Knochen und beleuchten aktuelle Therapieempfehlungen bezüglich der glukokortikoidinduzierten Osteoporose.
Summary
Glucocorticoids represent highly effective modulators of the immune system with antiinflammatory and immunosuppressive characteristics. Since their introduction into clinical medicine, glucocorticoids have been widely used in the treatment of several different diseases. Their application ranges from very low to very high doses. In spite of their many positive features, numerous adverse effects often limit the therapeutic use of glucocorticoids especially if they are given at larger dosages for a longer time. One typical adverse effect is the occurrence of glucocorticoid-induced osteoporosis, which represents the most common form of secondary osteoporosis. During the last years our knowledge about mechanisms of glucocorticoid-induced bone changes has increased considerably. It became obvious that glucocorticoids have both time and dose-dependent effects on bone. Also, they have regulatory functions on osteoblastogenesis and facilitate bone development at physiological concentrations, whereas their effects at pharmacological concentrations are almost contrary. In this article, we provide an overview on physiological and pathophysiological actions of glucocorticoids on bone and highlight current therapeutic strategies for glucocorticoidinduced osteoporosis.
-
Literatur
- 1 Buttgereit F. Do the treatment with glucocorticoids and/or the disease itself drive the impairment in glucose metabolism in patients with rheumatoid arthritis?. Ann Rheum Dis 2011; 70: 1881-1883.
- 2 Overman RA. et al. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res (Hoboken) 2013; 65: 294-298.
- 3 Duru N. et al. EULAR evidence-based and consensus-based recommendations on the management of medium to high-dose glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis 2013; 72: 1905-1913.
- 4 van der Goes MC. et al. Monitoring adverse events of low-dose glucocorticoid therapy: EULAR recommendations for clinical trials and daily practice. Ann Rheum Dis 2010; 69: 1913-1919.
- 5 Weinstein RS. Clinical practice. Glucocorticoidinduced bone disease. N Engl J Med 2011; 365: 62-70.
- 6 Walsh LJ. et al. The impact of oral corticosteroid use on bone mineral density and vertebral fracture. Am J Respir Crit Care Med 2002; 166: 691-695.
- 7 van Staa TP. et al. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 2000; 39: 1383-1389.
- 8 LoCascio V. et al. Bone loss in response to longterm glucocorticoid therapy. Bone Miner 1990; 08: 39-51.
- 9 van Staa TP. et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003; 48: 3224-3229.
- 10 Weinstein RS. Glucocorticoid-induced osteonecrosis. Endocrine 2012; 41: 183-190.
- 11 Strehl C, Buttgereit F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 2013; 380 (1–2): 32-40.
- 12 Chapman K. et al. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93: 1139-1206.
- 13 Eijken M. et al. The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Mol Cell Endocrinol 2006; 248: 87-93.
- 14 Bellows CG. et al. Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells in vitro. Endocrinology 1987; 21: 1985-1992.
- 15 Valero MA. et al. Bone density and turnover in Addison’s disease: effect of glucocorticoid treatment. Bone Miner 1994; 26: 9-17.
- 16 Rauch A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 2010; 11: 517-531.
- 17 Sher LB. et al. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int 2006; 79: 118-125.
- 18 Kalak R. et al. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone 2009; 45: 61-67.
- 19 Weber AJ. et al. Osteoblast-targeted disruption of glucocorticoid signalling does not delay intramembranous bone healing. Steroids 2010; 75: 282-286.
- 20 Cooper MS. et al. Osteoblastic 11beta-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J Bone Miner Res 2002; 17: 979-986.
- 21 Justesen J. et al. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology 2004; 145: 1916-1925.
- 22 Kim JB. et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res 2007; 22: 1913-1923.
- 23 Zhou H. et al. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J Biol Chem 2008; 283: 1936-1945.
- 24 Cheng SL. et al. Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 1994; 134: 277-286.
- 25 Patschan D. et al. Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone 2001; 29: 498-505.
- 26 Weinstein RS. et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.. J Clin Invest 1998; 102: 274-282.
- 27 Yao W. et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum 2008; 58: 1674-1686.
- 28 Chang JK. et al. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and proapoptotic factors in cultured human osteoblasts. Toxycology 2009; 258: 148-156.
- 29 Jia J. et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J 2011; 25: 3366-3376.
- 30 Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem 2010; 111: 1-6.
- 31 Weinstein RS. et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell 2010; 09: 147-161.
- 32 Jia D. et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006; 147: 5592-5599.
- 33 Hofbauer LC. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140: 4382-4389.
- 34 Nakashima T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011; 17: 1231-1234.
- 35 Rubin J. et al. Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology 1998; 139: 1006-1012.
- 36 Kim HJ. et al. Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 2006; 116: 2152-2160.
- 37 Brennan-Speranaza TC. et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 2012; 122: 4172-4189.
- 38 Kemmler W. et al. Effects of exercise on fracture reduction in older adults: a systematic review and meta-analysis. Osteoporos Int 2013; 24: 1937-1950.
- 39 Chang JT. et al. Interventions for the prevention of falls in older adults: systematic review and metaanalysis of randomised clinical trials. BMJ 2004; 328: 680.
- 40 Bischoff-Ferrari HA. et al. Effect of Vitamin D on falls: a meta-analysis. JAMA 2004; 291: 1999-2006.
- 41 Confavreux CB, Chapurlat RD. Systemic bone effects of biologic therapies in rheumatoid arthritis and ankylosing spondylitis. Osteoporos Int 2011; 22: 1023-1036.
- 42 Chapuy MC. et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int 2002; 13: 257-264.
- 43 Saidenberg-Kermanac HN. et al. Bone fragility in sarcoidosis and relationships with calcium metabolism disorders: a cross sectional study on 142 patients. Arthritis Res Ther. 2014 (epub ahead of print).
- 44 Kamphuis LS. et al. Calcium and Vitamin D in Sarcoidosis: Is Supplementation Safe?. J Bone Miner Res. 2014 April 18. [Epub ahead of print]