Subscribe to RSS
DOI: 10.1055/s-0038-1623911
Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the αvβ3 expression
Synthese und biologische Evaluierung eines 99mTc-markierten zyklischen RGD-Peptides für die nichtinvasive Darstellung der αvβ3-ExpressionPublication History
Received:
09 July 2003
26 September 2003
Publication Date:
11 January 2018 (online)
Summary
Aim: The αvβ3 integrin is involved in tumour induced angiogenesis and tumour metastasis. We describe the synthesis and evaluation of a 99mTc-labelled RGD analogue for the visualisation of αvβ3 integrin expression. Methods: The linear peptides were assembled on a solid support. Cyclisation was performed under high dilution conditions. For conjugation with the chelator peptide, a water soluble carbodiimide was used. Radiolabelling was carried out due to standard procedures with high radiochemical yield and radiochemical purity. For in vivo evaluation, nude mice bearing αvβ3-positive human melanoma M21 and αv-negative human melanoma M21-L or Balb/c mice bearing αv-positive murine osteosarcoma were used. Results: Activity accumulation of 99mTc-DKCK-RGD 240 min p. i. was 1.1% ID/g in the αvβ3-positive melanoma and 0.3% ID/g in the negative control tumour. In the osteosarcoma model 2.2% ID/g was found 240 min p. i. Planar gamma camera images allowed contrasting visualisation of αvβ3-positive tumours 240 min p. i. Blocking of the tumour using the αvβ3-selective pentapeptide cyclo(-ArgGly-Asp-D-Phe-Val-) reduces activity accumulation in the tumour to background level. However, 240 min p. i. highest activity concentration was found in kidneys resulting in low tumour/kidney ratios. Metabolite analysis 240 min p. i. showed approximately 60% intact tracer in kidneys and 80% in the tumour. Only 24% intact tracer was found in blood 30 min p. i. Conclusion: 99mTc-DKCK-RGD allows imaging of αvβ3-positive tumours in mice. However, pharmacokinetics as well as metabolic stability of the tracer have to be improved for potential clinical application.
Zusammenfassung
Ziel: Das αvβ3-Integrin spielt eine wesentliche Rolle in der tumorinduzierten Angiogenese und der Metastasenbildung. Wir beschreiben die Synthese und Evaluierung eines 99mTc-markierten RGD-Peptides zur Visualisierung der αvβ3-Integrin-Expression. Methoden: Die linearen Peptide wurden an der Festen Phase synthetisiert. Zyklisierung wurde in hoher Verdünnung durchgeführt. Für die Konjugation mit dem Chelatorpeptid wurde ein wasserlösliches Carbodiimid eingesetzt. Die Radio-markierung lieferte den Tracer in hohen radiochemischen Ausbeuten und radiochemischer Reinheit. Für die in vivoEvaluierung wurden Nacktmäuse mit αvβ3-positivem bzw. negativem humanem Melanom M21 bzw. M21-L oder Balb/c Mäuse, die ein αv-positives murines Osteosarkom tragen, verwendet. Ergebnisse: Die Anreiche-rung von 99mTc-DKCK-RGD 240 min p. i. im αvβ3-positiven Melanom betrug 1,1% ID/g und im Negativkontrolltumor 0,3% ID/g. Im Osteosarkom wurden 240 min p. i. 2,2% ID/g gefunden. Planare Gamma-kameraaufnahmen 240 min p. i. ermöglichten eine kontrastreiche Darstellung des αvβ3-positiven Tumors. Die höchste Aktivitätskonzentration wurde allerdings in den Nieren gefunden, was zu ungünstigen Tumor/ Nieren-Verhältnissen führt. Die Blockade mit dem αvβ3-selektivem Peptid zyklo(-Arg-Gly-Asp-D-Phe-Val-) reduzierte die Aktivitätsanreicherung im Tumor auf Hintergrundniveau. Die Metabolitenanalyse 240 min p. i. zeigte, dass in den Nieren ca. 60% und im Tumor ca. 80% der Gesamtaktivität vom intakten Tracer stammten. Im Blut wurden 30 min p. i. nur noch 24% intakte Verbindung gefunden. Schlussfolgerung: 99mTcDKCK-RGD erlaubt eine nicht-invasive Darstellung αvβ3-positiver Tumore im Mausmodell. Pharmakokinetik und metabolische Stabilität müssen für einen potentiellen klinischen Einsatz noch verbessert werden.
-
References
- 1 Aumailley M, Gurrath M, Muller G. et al. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 1991; 291: 50-4.
- 2 Banerjee S, Pillai MR, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 2001; 31: 260-77.
- 3 Bishop GG, McPherson JA, Sanders JM. et al. Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 2001; 103: 1906-11.
- 4 Blum JE, Handmaker H, Rinne NA. The utility of a somatostatin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 1999; 115: 224-32.
- 5 Brooks PC, Montgomery AM, Rosenfeld M. et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157-64.
- 6 Cheresh DA, Spiro RC. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987; 262: 17703-11.
- 7 Clezardin P. Recent insights into the role of integrins in cancer metastasis. Cell Mol Life Sci 1998; 54: 541-8.
- 8 Dechantsreiter MA, Planker E, Matha B. et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 1999; 42: 3033-40.
- 9 Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol 2001; 13: 563-8.
- 10 Fauchere JL, Morris AD, Thurieau C. et al. Modulation of the activity and assessment of the receptor selectivity in a series of new RGD-containing peptides. Int J Pept Protein Res 1993; 42: 440-4.
- 11 Haubner R, Finsinger D, Kessler H. Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the αvβ3 Integrin for a New Cancer Therapy. Angew Chem Int Ed Engl 1997; 36: 1374-89.
- 12 Haubner R, Gratias R, Diefenbach B. et al. Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists. J Am Chem Soc 1996; 118: 7461-72.
- 12a Haubner R, Kuhnast B, Mang C. et al. 18FGalacto-RDG: Synthesis, radiolabeling, metabolic stability and radiation dose estimates. Bioconjugate Chem. 2004 (in press)
- 13 Haubner R, Kuhnast B, Wester HJ. et al. [F-18]-RGD-Peptides Conjugated with Hydrophilic Tetrapeptides for the Noninvasive Determination of the Alpha(v)beta3 Integrin. J Nucl Med 2002; 43 Suppl 89P.
- 14 Haubner R, Wester HJ, Burkhart F. et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42: 326-36.
- 15 Haubner R, Wester HJ, Reuning U. et al. Radio-labeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999; 40: 1061-71.
- 16 Haubner R, Wester HJ, Weber WA. et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61: 1781-5.
- 17 Hoshiga M, Alpers CE, Smith LL. et al. Alpha(v)beta3 integrin expression in normal and atherosclerotic artery. Circ Res 1995; 77: 1129-35.
- 18 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25.
- 19 Lebtahi R, Le Cloirec J, Houzard C. et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med 2002; 43: 889-95.
- 20 Leisner M, Kessler H, Schwaiger M. et al. Synthesis of Na-D-Phe1-Amadori Derivatives of Tyr3-Octreotide: Precursor for 123I-/18F-Labelled SSTR-Binding SPECT/PET Tracers with Improved Biodistribution. J Labelled Cpd Radiopharm 1999; 42 Suppl. S549-S551.
- 21 Mease RC, Lambert C. Newer methods of labeling diagnostic agents with Tc-99m. Semin Nucl Med 2001; 31: 278-85.
- 22 Pearson DA, Lister J, McBride WJ. et al. Thrombus imaging using technetium-99m-labeled high-potency GPIIb/IIIa receptor antagonists. Chemistry and initial biological studies. J Med Chem 1996; 39: 1372-82.
- 23 Pfaff M, Tangemann K, Muller B. et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 1994; 269: 20233-8.
- 24 Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697-715.
- 25 Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491-7.
- 26 Schottelius M, Wester HJ, Reubi JC. et al. Improvement of Pharmacokinetics of Radio-iodinated Tyr3-Octreotide by Conjugation with Carbohydrates. Bioconjugate Chem 2002; 13: 1021-30.
- 27 Sivolapenko GB, Skarlos D, Pectasides D. et al. Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 1998; 25: 1383-9.
- 28 Su ZF, Liu G, Gupta S. et al. In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(v)beta(3) integrin for tumor imaging. Bioconjug Chem 2002; 13: 561-70.
- 29 Teitelbaum SL. Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 2000; 18: 344-9.
- 30 Wester HJ, Schottelius M, Scheidhauer K. et al. PET Imaging of Somatostatin Receptors: Design, Synthesis and Preclinical Evaluation of a Novel 18F-labelled, Carbohydrated Analogue of Octreotide. Eur J Nucl Med Mol Imaging 2003; 30: 117-22.
- 31 Wester HJ, Schottelius M, Scheidhauer K. et al. Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics. Eur J Nucl Med Mol Imaging 2002; 29: 28-38.