Nuklearmedizin 2001; 40(01): 23-30
DOI: 10.1055/s-0038-1623988
Originalarbeiten – Original Articles
Schattauer GmbH

Prognostic significance of positron emission tomography using fluorine-18-fluorodeoxyglucose in patients treated for malignant lymphoma

Prognostische Bedeutung der Therapiekontrolle durch die Positronen-Emissions-Tomographie mit Fluor-18-Deoxyglukose bei Patienten mit malignen Lymphomen
U. Cremerius
1   Departments of Nuclear Medicine (Head: Prof. U. Buell, M.D.)
,
U. Fabry
2   Departments of internal Medicine IV (Head: Prof. R. Osieka, M.D.)
,
J. Neuerburg
3   Departments of Diagnostic Radiology (Head: Prof. R. Günther, M.D.), University of Technology, Aachen, Germany
,
M. Zimny
1   Departments of Nuclear Medicine (Head: Prof. U. Buell, M.D.)
,
R. Bares
1   Departments of Nuclear Medicine (Head: Prof. U. Buell, M.D.)
,
R. Osieka
2   Departments of internal Medicine IV (Head: Prof. R. Osieka, M.D.)
,
U. Bull
1   Departments of Nuclear Medicine (Head: Prof. U. Buell, M.D.)
› Author Affiliations
Further Information

Publication History

Receive: 29 June 2000

in revised form: 20 September 2000

Publication Date:
10 January 2018 (online)

Summary

Aim: To evaluate the prognostic significance of positron emission tomography (PET) using fluorine-18-[2]-fluoro-2-deoxyglucose (FDG) in patients treated for Hodgkin’s disease (HD) or nori-Hodgkin’s lymphoma (NHL) compared to conventional restaging (CRS). Methods: Fifty-six patients with either HD (ç = 22), high-grade NHL (n = 26) or centrocyfic-centroblastic NHL (n = 8) were included. PET was performed in 41 patients for treatment reevaluation up to three months after therapy and in patients with persisting residual masses (n = 10) or suspected relapse (n = 5) four to twelve months after treatment. The scans were evaluated qualitatively and quantitatively using standardised uptake values (SUV). Progression-free survival (PFS) was estimated to assess the prognostic value of FDG PET and clinical follow-up was taken as gold standard. Results: PET was positive in nineteen of 41 patients studied for treatment reevaluation. Progression was observed after a median interval of two months (range 0-15) in sixteen of 19 patients after a positive PET scan and in three of 22 patients after a negative scan (p <.001). Median duration of follow-up in progression-free patients was 21 months (range 6-72). In patients with a partial remission in CRS progression was more common in PET-positive than in PET-negative patients (5 of 7 vs. 1 of 14; ñ <.01) and positivity with PET was associated with poorer PFS (p <.0025). PET studies performed four to twelve months after treatment were true negative in seven, true positive in five and false-positive in three patients. SUV > 11.35 of lymphoma lesions was associated with poorer PFS than SUV <11.35 (p <0.025). Conclusion: We conclude that FDG PET after treatment of malignant lymphoma has a high prognostic value and should be recommended in patients with persistence of residual masses.

Zusammenfassung

Ziel: Untersuchung der prognostischen Bedeutung der Positronen-Emissions-Tomographie (PET) mit F-l 8-Fluor-deoxyglukose im Vergleich zu konventionellen Restaging-verfahren (CRS) bei Patienten, welche wegen eines Morbus Hodgkin (HD) oder eines Non-Hodgkin-Lymphoms (NHL) behandelt wurden. Methoden: 56 Patienten wurden eingeschlossen, hierunter 22 mit HD, 26 mit NHL und acht mit einem zentrozytisch-zentroblastischen NHL. Die PET wurde bei 41 Patienten als Therapiekontrolle innerhalb von drei Monaten nach Therapieende durchgeführt. 10 Patienten wurden wegen persistierender residualer Raumforderungen und fünf wegen eines Rezidivverdachtes vier bis zwölf Monate nach Therapieende untersucht. Die PET-Untersuchungen wurden qualitativ und quantitativ mittels des ^standardised uptake value« (SUV) befandet. Das progressionsfreie Überleben (PFS) wurde als klinischer Endpunkt erhoben und der klinische Verlauf als Goldstandard betrachtet. Ergebnisse: 19 von 41 Patienten, welche zur Therapiekontrolle untersucht wurden, wiesen pathologische PET-Befunde auf. Bei 16 von 19 Patienten wurde nach einer positiven PET ein Lymphomprogress beobachtet, dagegen nur bei drei von 22 Patienten nach einer negativen PET (p <0,001). Die mediane Zeitdauer bis zum Auftreten eines Progresses betrug zwei Monate (Spannweite 0-15 Monate), die mediane Beobachtungsdauer bei progressionsfreiem Verlauf 21 Monate (Spannweite 6-72 Monate). Bei Patienten mit einer partiellen Remission in der konventionellen Diagnostik war ein Progress ebenfalls signifikant häufiger nach einer positiven PET (5 von 7 versus 1 von 14 Fällen; ñ <0,01). Die zwischen vier und zwölf Monate nach Therapie durchgeführten PET-Studien waren richtig negativ bei sieben, richtig positiv bei fünf und falsch positiv bei drei Patienten. Ein SUV >11,35 des Restlymphoms war mit einem signifikant kürzeren PFS (ñ <0,025) assoziiert. Sihlussfolgerung: Wir schließen hieraus, dass die FDG-PET bei Patienten, welche wegen eines malignen Lymphoms therapiert wurden, eine hohe prognostische Bedeutung besitzt und insbesondere bei der Persistenz von Residualbefunden empfohlen werden sollte.

 
  • References

  • 1 Bares R, Klever P, Hauptmann S. et al. F-18 fluorodeoxyglucose PET: in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 1994; 192: 79-86.
  • 2 Canellos GP. Residual mass in lymphoma may not be residual disease. J Clin Oncol 1988; 6: 931-3 (editorial).
  • 3 Carr R, Barrington SF, Madan B. et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998; 91: 3340-6.
  • 4 Cheson BD, Horning SJ, Coiffier B. et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol 1999; 17: 1244-53.
  • 5 Cremerius U, Fabry U, Kröll U. et al. Clinical value of FDG-PET for therapy monitoring of malignant lymphomas - results of a retrospective study in 72 patients. Nuklearmedizin 1999; 38: 24-30.
  • 6 Cremerius U, Fabry U, Neuerburg J, Zimny M, Osieka R, Buell U. Positron emission tomography with l8F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun 1998; 19: 1055-63.
  • 7 De Wit M, Bumann D, Beyer W, Herbst K, Clausen M, Hossfeld D. Whole-body positron emission tomography (PET) for diagnosis of residual mass in patients with lymphoma. Ann Oncol 1997; 8 (Suppl. 01) S57-60.
  • 8 Dimitrakopoulou-Strauss A, Strauss LG, Goldschmidt H, Lorenz WJ, Maier-Borst W, van Kaick G. Evaluation of tumour metabolism and multidrug resistance in patients with treated malignant lymphomas. Eur J Nucl Med 1995; 22: 434-42.
  • 9 Engel H, Steinen H, Buck A, Berthold T, Huch-Böni RA, von Schuthess GK. Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996; 37: 441-6.
  • 10 Gasparini M, Bombardieri E, Castellani M. et al. Gallium-67 scintigraphy evaluation of therapy in non-Hodgkin’s lymphoma. J Nucl Med 1998; 39: 1586-90.
  • 11 Jerusalem G, Beguin Y, Fassotte MF. et al. Whole-body positron emission tomgraphy using 18F-fluorodeoxyglucose for posttreat-ment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999; 94: 429-33.
  • 12 Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assoc 1958; 53: 457-81.
  • 13 Kaplan WD, Jochelson MS, Herman TS. et al. Gallium-67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large-cell lymphoma. J Clin Oncol 1990; 8: 1966-70.
  • 14 Lapela M, Leskinen S, Minn H. et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglu-cose. Blood 1995; 86: 3522-7.
  • 15 Lorenzen J, de Wit M, Buchert R, Igel B, Bohuslavizki KH. Granulation tissue: pitfall in therapy control with F-18-FDG PET after chemotherapy. Nuklearmedizin 1999; 38: 333-6.
  • 16 Moog F, Bangerter M, Diederichs CG. et al. Extranodal malignant lymphoma: detection of FDG PET versus CT. Radiology 1998; 206: 475-81.
  • 17 Moog F, Bangerter M, Diederichs CG. et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. Radiology 1997; 203: 795-800.
  • 18 Okada LYoshikawa K, Imazeki K. et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 1991; 32: 686-91.
  • 19 Radford JA, Cowan RA, Flanagan M, Dunn G. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin’s disease. J Clin Oncol 1988; 6: 940-6.
  • 20 Römer W, Hanauske AR, Ziegler S. et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998; 91: 4464-71.
  • 21 Shipp MA, Harrington DP. (for The International Non-Hodgkin’s Lymphoma Prognostic Factors Project).. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993; 329: 987-94.
  • 22 Stansfeld A, Diebold J, Noel H. et al. Updated Kiel classification for lymphomas. Lancet 1988; 1: 292-3.
  • 23 Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623-48.
  • 24 Thill R, Neuerburg J, Fabry U. et al. Comparison of findings with 18-FDG-PET and CT in pretherapeutic staging of malignant lymphoma. Nuklearmedizin 1997; 36: 234-9.
  • 25 Veselie HJ, Miraldi FD. FDG PET of the retro-peritoneum: normal anatomy, variants, pathologic conditions, and strategies to avoid diagnostic pitfalls. Radiographics 1998; 18: 805-23.
  • 26 Vose JM, Anderson JR, Kessinger A. et al. High-dose chemotherapy and autologous hematopoietic stem-cell transplantation for aggressive non-Hodgkin’s lymphoma. J Clin Oncol 1993; 11: 1846-51.
  • 27 Weinblatt ME, Zanzi I, Belakhlef A, Babchyck B, Kochen J. False-positive FDG-PET imaging of the thymus of a child with Hodgkin’s disease. J Nucl Med 1997; 38: 888-90.
  • 28 WHO handbook for reporting results of cancer treatment, No. 48. WHO Offset Publication; Geneva: 1979
  • 29 Willkomm P, Palmedo H, Grunwald F, Ruhlmann J, Biersack HJ. Functional imaging of Hodgkin’s disease with FDG-PET and gallium-67. Nuklearmedizin 1998; 37: 251-3.
  • 30 Yoshioka T, Takahashi H, Oikawa H. et al. Influence of chemotherapy on FDG uptake by human cancer xenografts in nude mice. J Nucl Med 1997; 38: 714-7.
  • 31 Zimny M, Kaiser HJ, Cremerius U. et al. F-18-FDG positron imaging in oncological patients: gamma camera coincidence detection versus dedicated PET. Nuklearmedizin 1999; 38: 108-14.
  • 32 Zimny M, Kaiser HJ, Cremerius U. et al. Dual-head gamma camera 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography in oncological patients: effects of nonuniform attenuation correction on lesion detection. Eur J Nucl Med 1999; 26: 818-23.
  • 33 Zinzani PL, Magagnoli M, Chierichetti F. et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol 1999; 10: 1181-4.