Nuklearmedizin 2003; 42(06): 240-243
DOI: 10.1055/s-0038-1625734
Original Article
Schattauer GmbH

Iodine excretion during stimulation with rhTSH in differentiated thyroid carcinoma

Iodexkretion während Stimulation mit rhTSH beim differenzierten Schilddrüsenkarzinom
M. Löffler
1   Department of Nuclear Medicine (Head: Prof. Dr. med. O. Schober), University of Münster, Germany
,
M. Weckesser
1   Department of Nuclear Medicine (Head: Prof. Dr. med. O. Schober), University of Münster, Germany
,
C. Franzius
1   Department of Nuclear Medicine (Head: Prof. Dr. med. O. Schober), University of Münster, Germany
,
P. Kies
1   Department of Nuclear Medicine (Head: Prof. Dr. med. O. Schober), University of Münster, Germany
,
O. Schober
1   Department of Nuclear Medicine (Head: Prof. Dr. med. O. Schober), University of Münster, Germany
› Author Affiliations
Further Information

Publication History

Received: 06 May 2003

in revised form: 07 August 2003

Publication Date:
10 January 2018 (online)

Summary

Aim: Elevated iodine intake is a serious problem in the diagnostic and therapeutic application of 131iodine in patients with differentiated thyroid cancer. Therefore, iodine avoidance is necessary 3 months in advance. Additionally, endogenous stimulation requires withdrawal of thyroid hormone substitution for 4 weeks. Exogenous stimulation using recombinant human TSH (rhTSH) enables the continuous substitution of levothyroxine, which contains 65.4% of its molecular weight in iodine. Thus, a substantial source of iodine intake is maintained during exogenous stimulation. Although this amount of stable iodine is comparable to the iodine intake in regions of normal iodine supply, it may reduce the accumulation of radioiodine in thyroid carcinoma tissue. The aim of this study was to assess the iodine excretion depending on different ways of stimulation. Methods: Iodine excretion was measured in 146 patients in the long term follow up after differentiated thyroid carcinoma. Patients were separated into 2 groups, those on hormone withdrawal (G I) and rhTSH-stimulated patients on hormone substitution (G II). Results: Iodine excretion was significantly lower in hypothyroid patients (G I, median 50 μg/l, range: 25-600 μg/l) than in those under levothyroxine medication (G II, median 75 μg/l, 25-600 μg/l, p <0.027). TSH in G I (median 57.0 μU/ml, range: 14.4-183 μU/ml) was significantly lower (p <0.001) than in G II (117 μU/ml, 32.2-281 μU/ml). Conclusion: Iodine excretion was higher in patients under rhTSH-stimulation than after hormone withdrawal. This may indicate an increased iodine pool in rhTSH-stimulated patients (deiodination of levothyroxine), thus limiting the sensitivity of radioio-dine scanning to the level of endogenous stimulation despite significantly higher TSH levels during rhTSH-stimulation.

Zusammenfassung

Ziel: Eine erhöhte Iodzufuhr ist ein erhebliches Problem in der diagnostischen und therapeutischen Anwendung von 131Iod bei Patienten mit differenziertem Schilddrüsenkarzinom. Deshalb erfolgt eine Iodkarenz über 3 Monate, zudem wird bei der endogenen Stimulation auch die Substitution mit Levothyroxin für 4 Wochen abgesetzt. Die exogene Stimulation mit rekombinantem humanen TSH (rhTSH) wird unter fortgesetzter Substitution mit Levothyroxin durchgeführt. Dieses besteht zu 65% seines Molekulargewichts aus Iod. Dies führt zu einer persistierenden und nicht unerheblichen Iodzufuhr. Obwohl diese Iodmenge die übliche Iodzufuhr in Gebieten mit normaler Iodversorgung nicht überschreitet, kann sie den Radioiod-Uptake in Schilddrüsen-und Schilddrüsenkarzinomzellen beeinträchtigen. Das Ziel dieser Studie war, die Iodexkretion abhängig von der Stimulationsweise zu messen. Methoden: Die Iodexkretion wurde bei 146 Patienten in der langfristigen Tumor-nachsorge bei differenziertem Schilddrüsenkarzinom gemessen. Die Patienten wurden unterteilt in eine Gruppe unter Hormonentzug (G I) und in eine Gruppe unter rhTSH-Stimulation (G II). Ergebnisse: Die endogen stimulierten Patienten wiesen eine signifikant geringere Iodexkretion (Median 50 μg/l, Spannweite 25-600 μg/l) auf als Patienten mit persistierender Hormonsubstitution (75 μg/l, 25-600 μg/l, p <0,027). TSH war in G I (Median: 57,0 μU/ml, Spannweite 14,4-183 μU/ml) signifikant niedriger (p <0,001) als in G II (117 μU/ml, 32,25-281 μU/ml). Schlussfolgerung: Die Iodexkretion ist unter rhTSH-Stimulation höher als nach Hormonentzug. Daraus kann auf einen erhöhten Iodpool in rhTSH-stimulierten Patienten rückgeschlossen werden (De-Iodierung des Levothyroxins). Dies kann die Sensitivität von Iodszintigraphien auf das Niveau limitieren, das auch von endogen stimulierten Patienten erreicht wird, obwohl der TSH-Wert unter rhTSH-Stimulation signifikant höher ist.

 
  • References

  • 1 Andersen S, Pedersen KM, Pedersen IB. et al. Variations in urinary iodine excretion and thyroid function. A 1-year study in healthy men. Eur J Endocrinol 2001; 144: 461-5.
  • 2 Dietlein M, Dressler J, Grunwald F. et al. Guideline for in vivo and in vitro procedures for thyroid diseases (version 2). Nuklearmedizin 2003; 42: 109-15.
  • 3 Haugen BR, Pacini F, Reiners C. et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 1999; 84: 3877-85.
  • 4 Incerti C. Recombinant human thyroid-stimulating hormone (rhTSH): clinical development. J Endocrinol Invest 1999; 22: 8-16.
  • 5 Ishizuki Y, Hirooka Y, Murata Y. Urinary iodide excretion in Japanese people and thyroid dysfunction. Nippon Naibunpi Gakkai Zasshi 1992; 68: 550-6.
  • 6 Kogai T, Endo T, Saito T. et al. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 1997; 138: 2227-32.
  • 7 Ladenson PW, Braverman LE, Mazzaferri EL. et al. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med 1997; 337: 888-96.
  • 8 Lippi F, Capezzone M, Angelini F. et al. Radio-iodine treatment of metastatic differentiated thyroid cancer in patients on L-thyroxine, using recombinant human TSH. Eur J Endocrinol 2001; 144: 5-11.
  • 9 Löffler M, Weckesser M, Franzius C. et al. Exogenous stimulation by rhTSH in patients with differentiated thyroid carcinoma maintains elevated iodine excretion. J Nucl Med 2003; 44: 387P.
  • 10 Luster M, Lassmann M, Haenscheid H. et al. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab 2000; 85: 3640-5.
  • 11 Luster M, Reinhardt W, Korber C. et al. The use of recombinant human TSH in a patient with metastatic follicular carcinoma and insufficient endogenous TSH production. J Endocrinol Invest 2000; 23: 473-5.
  • 12 Mariani G, Ferdeghini M, Augeri C. et al. Clinical experience with recombinant human thyrotrophin (rhTSH) in the management of patients with differentiated thyroid cancer. Cancer Biother Radiopharm 2000; 15: 211-7.
  • 13 Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation?. J Clin Endocrinol Metab 2002; 87: 1490-8.
  • 14 McDougall IR, Weigel RJ. Recombinant human thyrotropin in the management of thyroid cancer. Curr Opin Oncol 2001; 13: 39-43.
  • 15 Menzel C, Kranert WT, Dobert N. et al. RhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half life of (131)I. J Nucl Med 2003; 44: 1065-8.
  • 16 Morris LF, Wilder MS, Waxman AD. et al. Reevaluation of the impact of a stringent low-iodine diet on ablation rates in radioiodine treatment of thyroid carcinoma. Thyroid 2001; 11: 749-55.
  • 17 Pacini F, Molinaro E, Castagna MG. et al. Ablation of thyroid residues with 30 mCi (131)I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002; 87: 4063-8.
  • 18 Pellegriti G, Scollo C, Giuffrida D. et al. Usefulness of recombinant human thyrotropin in the radiometabolic treatment of selected patients with thyroid cancer. Thyroid 2001; 11: 1025-30.
  • 19 Perros P. Recombinant human thyroid-stimulating hormone (rhTSH) in the radioablation of well-differentiated thyroid cancer: preliminary therapeutic experience. J Endocrinol Invest 1999; 22: 30-4.
  • 20 Petrich T, Borner AR, Weckesser E. et al. Follow-up of differentiated thyroid cancer patients using rhTSH-preliminary results. Nuklearmedizin 2001; 40: 7-14.
  • 21 Reiners C, Luster M, Lassmann M. Clinical experience with recombinant human thyroid-stimulating hormone (rhTSH): whole-body scanning with iodine-131. J Endocrinol Invest 1999; 22: 17-24.
  • 22 Rendl J, Bier D, Reiners C. Methods for measuring iodine in urine and serum. Exp Clin Endocrinol Diabetes 1998; 106: S34-41.
  • 23 Robbins RJ, Tuttle RM, Sharaf RN. et al. Preparation by recombinant human thyrotropin or thyroid hormone withdrawal are comparable for the detection of residual differentiated thyroid carcinoma. J Clin Endocrinol Metab 2001; 86: 619-25.
  • 24 Torlontano M, Crocetti U, D’Aloiso L. et al. Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low risk patients with differentiated thyroid cancer. Eur J Endocrinol 2003; 148: 19-24.
  • 25 Tsatsoulis A, Johnson EO, Andricula M. et al. Thyroid autoimmunity is associated with higher urinary iodine concentrations in an iodine-deficient area of Northwestern Greece. Thyroid 1999; 9: 279-83.
  • 26 Weber K, Wellner U, Voth E. et al. Influence of stable iodine on the uptake of the thyroid – model versus experiment. Nuklearmedizin 2001; 40: 31-7.
  • 27 Wellner U, Alef K, Schicha H. Influence of physiological and pharmacological amounts of iodine on the 131I uptake of the thyroid gland – a model calculation. Nuklearmedizin 1996; 35: 251-63.