Nuklearmedizin 2001; 40(06): 179-186
DOI: 10.1055/s-0038-1625760
Editorial
Schattauer GmbH

Pulmonary thromboembolism: a retrospective study on the examination of 991 patients by ventilation/perfusion SPECT using Technegas

Lungenembolie: Retrospektive Studie über Ventihtions/Perfusions-SPECT-Untersuchungen unter Verwendung von Technegas bei 991 Patienten
M. Lemb
1   Röntgeninstitut, Bremerhaven/Germany
,
H. Pohlabeln
2   Bremer Institut für Präventionsforschung und Sozialmedizin (BlPS), Universität Bremen
› Author Affiliations
Further Information

Publication History

Received: 15 December 2000

01 June 2001

Publication Date:
20 February 2018 (online)

Summary

Purpose: Conventional planar ventilation/perfusion (V/P)- imaging in those patients suspected of suffering from pulmonary thromboembolism (PTE) is of limited diagnostic value. It is the purpose of this retrospective study to determine whether the use of V/P- SPECT using Technegas might reduce the rate of those diagnostic uncertainties and might lead to better results. Methods: 991 patients (660 female, 331 male, age 18-90, mean 60), referred to our laboratory with suspected PTE, were examined as follows: patients inhaled 37 MBq of Technegas in the supine position and a SPECT-acquisition was started. Following SPECT-completion, 185 MBq 99mTc-MAA was injected intravenously. SPECT was then repeated. Coronal and transverse ventilation and perfusion SPECT-slices were reconstructed and compared section by section. 85 patients underwent control scans by the same technique at a mean interval of 22 months after the original scans. Results: As the SPECT images in almost all cases made a clear match/mismatch decision possible, we categorized all patients as embolic (PTE+) if there was at least one mismatching defect, and as non embolic (PTE-) if there were none. Our results were: PTE +: 178 patients (18%), PTE-: 808 patients (81%), uncertain: 5 patients (0.5%), if 34 triple-match defects are included: 39 patients (3.9%). 46 patients, categorized as PΪE+ underwent a control V/P scan after anticoagulant therapy. In 44 of these patients, PTE was confirmed by the controls. In a control group of 39 PTE- patients, control scans were unchanged in 38 cases. From these observations we can calculate a sensitivity of 96% and a specificity of 97%. Conclusion: We conclude that V/P imaging can be improved significantly by V/P SPECT using Technegas.

Zusammenfassung

Ziel: Bei der Fragestellung einer Lungenembolie ist die konventionelle planare Venlilations-/Perfusionsszinti-graphie (V/P-Szintigrafie) mit diagnostischen Unsicherheiten behaftet. Die vorliegende retrospektive Studie hat den Zweck, festzustellen, ob der Einsatz der SPECT-Technik unter Verwendung von Technegas die Rate dieser Unsicherheiten reduzieren kann. Methode: 991 Patienten (Pat., 660 weiblich, 331 männlich, Alter 18-90) mit der Verdachtsdiagnose einer Lungenembolie wurden in folgender Weise untersucht: Inhalation von 37 MBq Technegas in liegender Position mit anschließender SPECT-Akquisition. Im Anschluss i.v. Injektion von 185 MBq Tc99m-MAA, gefolgt von einer weiteren SPECT-Akquisition. Rekonstruktion koronaler und transversaler Ventilations- und Perfusionsschnitte und Schicht- für Schicht-Vergleich. Bei 85 Pat. fanden in gleicher Technik Kontrollszintigramme im mittleren Abstand von 22 Monaten statt. Ergebnisse: SPECT-Bilder erlauben in der Regel eine klare Einstufung, ob ein Match- oder ein Mismatch-Befund vorliegt. Wir haben alle Pat. als emboliebehaftet (PTE+) eingestuft, bei denen wenigstens ein Mismatch-Defekt nachzuweisen war, und ansonsten als emboliefrei (PTE-). Damit erhielten wir folgende Resultate: PTE+: 178 Pat. (18%), PTE-: 808 Pat. (81%), unsicher: 5 Pat. (0,5%), unter Hinzuziehung von 34 Pat. mit Triple-match-Befunden: 39 Pat. (3,9%). Bei 46 PTE+-Pat. bestätigte sich die Diagnose in den Verlaufskontrollen in 44 Fällen. Bei 39 PTE—Pat. zeigte sich nur in einem einzigen Fall in der Verlaufskontrolle eine Embolie. Daraus ergibt sich eine Sensitivität des Verfahrens von 96% und eine Spezifität von 97%. Schlussfolgerung: V/P-SPECT unter Verwendung von Technegas führt zu einer signifikanten Verbesserung der Aussagekraft der Lungenszintigraphie beim Verdachtsfall Lungenembolie.

 
  • References

  • 1 Barghouth G, Yersin B, Boubaker A. et al. Combination of clinical and V/Q scan assessment for the diagnosis of pulmonary embolism: a 2-year outcome prospective study. Eur J Nucl Med 2000; 27: 1280-5.
  • 2 Bliimcke S, Burkhardt A, Doerr W. et al. Pathologie der Lunge. In: Spezielle pathologische Anatomie, Bd 16. Doerr W, Seifert G. (eds). Berlin, Heidelberg. New York. Tokyo: Springer; 1983
  • 3 Burch WM, Sullivan PJ, Mc Laren J. Technegas - a new ventilation agent for lung scanning. Nuc Med Commun 1986; 7: 865-71.
  • 4 Collen D. Exact Confidence Limits: Modelling Binary Data. London: Chapman & Hall,; 1991: 23-5.
  • 5 Corbus HF, Seitz JP, Larson RK. et al. Diagnostic usefulness of lung SPET in pulmonary thromboembolism: An outcome study. Nuc Med Commun 1997; 18: 897-906.
  • 6 Fogelman I, Maisey MN, Clarke SEM. An Atlas of Clinical Nuclear Medicine. 2nd ed. St. Louis, Baltimore: Mosby; 1993: 521-76.
  • 7 Goldhaber SZ. Pulmonary embolism. N Engl J Med. 1998; 339: 93-104.
  • 8 Goodman LR. CT of acute pulmonary emboli: where does it fit?. RadioGraphics 1997; 17: 1037-42.
  • 9 Goodman LR, Lipchik RJ, Kuzo RS. et al. Subsequent pulmonary embolism: risk after a negative helical CT pulmonary angiogram -prospective comparison with scintigraphy. Radiology 2000; 215: 535-42.
  • 10 Gottschalk A. PIOPED trial: ventilation/ perfusion scanning. In: Potchen EJ, Grainger RG, Greene R. (eds). Pulmonary radiology/by members of the Fleischner Society. Philadelphia, London: W. B. Saunders; 1993: 103-7.
  • 11 Hartmann IJC, Hägen PJ, Stokkel MPM. et al. Technegas versus 81mKr ventilation-perfusion scintigraphy: a comparative study in patients with suspected acute pulmonary embolism. J Nucl Med 2001; 42: 393-400.
  • 12 Howarth DM, Lan L, Thomas PA, Allen LW. 99mTc technegas ventilation and perfusion lung scintigraphy for the diagnosis of pulmonary embolus. J Nucl Med 1999; 40: 579-84.
  • 13 Isitman AT, Collier BD, Palmer DW. et al. Comparison of technetium-99m pyrophosphate and technetium-99m DTPA aerosols for SPECT ventilation lung imaging. J Nucl Med 1998; 29: 1761-7.
  • 14 Kaneko K, Milic-Emili J, Dolovich MB. et al. Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol 1966; 21: 767-77.
  • 15 Lemb M, Oei TH, Eifert H. et al. Technegas: a study of particle structure, size and distribution. Eur J Nucl Med 1993; 20: 576-9.
  • 16 Luig H, Eschner W, Bahre M. et al. Eine iterative Strategie zur Bestimmung der Quellverteilung bei der Einzelphotonen-Tomographie mit einer rotierenden Gammakamera (SPECT). Nuklearmedizin 1988; 27: 140-6.
  • 17 Manny J, Hechtman HB. Vasoactive humoral factors. In: Goldhaber SZ. (ed). Pulmonary embolism and deep venous thrombosis. Philadelphia, London: W. B. Saunders Company; 1985: 283-6.
  • 18 Mayo JR, Remy-Jardin M, Müller NL. et al. Pulmonary embolism: prospective comparison of spiral CT with ventilation-perfusion scintigraphy. Radiology 1997; 205: 447-52.
  • 19 Morrell NW, Nijran KS, Jones BE. et al. The underestimation of segmental defect size in radionuclide lung scanning. J Nucl Med 1993; 34: 370-4.
  • 20 Palareti G, Leali N, Coccheri S. et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISOCOAT). Lancet 1996; 348: 423-8.
  • 21 PIOPED Investigators. Value of the ventilation/perfusion scan in acute pulmonary embolism. JAMA 1990; 263: 2753-9.
  • 22 Prandoni P, ten Cate JW. Epidemiology, risk factors, and natural history of venous thromboembolism. In: Pulmonary embolism. Oudkerk O, van Beek EJR, ten Cate JW. (eds). Berlin, Vienna: Blackwell Science; 1999: 2-32.
  • 23 Qanadli SD, Hajjam ME, Mesurolle B. et al. Pulmonary embolism detection: prospective evaluation of dual-section helical CT versus selective pulmonary arteriography in 157 patients. Radiology 2000; 217: 447-55.
  • 24 Remy-Jardin M, Remy J, Artaud D, Deschildre F, Duhamel A. Peripheral pulmonary arteries: optimization of the spiral CT acquisition protocol. Radiology 1997; 204: 157-63.
  • 25 Sando Y, Inoue T, Nagai R, Endo K. Ventilation/perfusion ratios and simultaneous dual-radionuclide single-photon emission tomography with krypton-81m and technetium-99m macroaggregated albumin. Eur J Nucl Med 1997; 24: 1237-44.
  • 26 Sasaki Y, Imai T, Shinkai T. et al. Estimation of regional lung function in interstitial pulmonary disease using 99mTc-technegas and 99mTc-macroaggregated albumin single-photon emission tomography. Eur J Nucl Med 1998; 25: 1623-9.
  • 27 Senden TJ, Moock KH, Fitz Gerald J. et al. The physical and chemical nature of technegas. J Nucl Med 1997; 38: 1327-33.
  • 28 Smith R, Alderson PO. Ventilation-perfusion scintigraphy inpulmonary embolism. In: Loken MD. (ed.). Pulmonary nuclear medicine. Nor-walk, Connecticut/ Los Altos, California: Appleton & Lange;; 1987: 51-79.
  • 29 Strong JQAgnew JE. The particle size distribution of technegas and its influence on regional lung deposition. Nucl Med Commun 1989; 10: 425-40.
  • 30 Sullivan PJ, Burke WM, Burch WM. et al. A clinical comparison of technegas and xenon-133 in 50 patients with suspected pulmonary embolus. Chest 1988; 94: 300-4.
  • 31 Touya JJ, Corbus HF, Savala KM. et al. Single photon emission computed tomography in the diagnosis of pulmonary thromboembolism. Sem Nucl Med 1986; 16: 306-36.
  • 32 van Rossum AB, Pattynama PMT, Mallens WMC. et al. Can helical CT replace scintigraphy in the diagnostic process in suspected pulmonary embolism? A retrolective-prolec-tive cohort study focusing on total diagnostic yield. Eur Radiol 1998; 8: 90-6.
  • 33 Waters W. Ventilation-perfusion scintigraphy. Nuklearmedizin 1987; 26: 111-9.
  • 34 Worsley DF, Abass A. Comprehensive analysis of the results of the PIOPED study. J Nucl Med 1995; 36: 2380-7.