Nuklearmedizin 1998; 37(02): 68-72
DOI: 10.1055/s-0038-1629795
Originalarbeiten — Original Articles
Schattauer GmbH

Dosimetrische Grundlagen für die endo vaskuläre Therapie mit Re-188 zur Prävention der Restenose nach Angioplastie

Dosimetrie Fundamentals of Endo vascular Brachytherapy Using Re-188 to Prevent Restenosis after Angioplasty
J. Kotzerke
1   Aus der, Radiologie III (Nuklearmedizin) und Radiologie II (Strahlentherapie) Universität Ulm, Germany
,
Marion Rentschier
1   Aus der, Radiologie III (Nuklearmedizin) und Radiologie II (Strahlentherapie) Universität Ulm, Germany
,
G. Glatting
1   Aus der, Radiologie III (Nuklearmedizin) und Radiologie II (Strahlentherapie) Universität Ulm, Germany
,
E. Schneider
1   Aus der, Radiologie III (Nuklearmedizin) und Radiologie II (Strahlentherapie) Universität Ulm, Germany
,
M. Stabin
2   Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
,
F. F. Knapp
2   Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
,
S. N. Reske
1   Aus der, Radiologie III (Nuklearmedizin) und Radiologie II (Strahlentherapie) Universität Ulm, Germany
› Author Affiliations
Further Information

Publication History

Eingegangen: 08 September 1997

in revidierter Form: 24 September 1997

Publication Date:
03 February 2018 (online)

Zusammenfassung

Ziel: Für die endovaskuläre Brachytherapie stehen unterschiedliche Radionuklide zur Verfügung. Ein interessantes Konzept ist die Nutzung eines flüssigen Betastrahlers in einem Ballonkatheter. Re-188 kann aus einem Generatorsystem gewonnen werden und steht somit täglich zur Verfügung. Es sollten dosimetrische Daten erhoben werden. Methode: Es wurde die radiale Abnahme der Dosis von Re-188 bei einem typischen Dilatationskatheter (Durchmesser 3 mm, Länge 20 mm) berechnet und mit TLD-Messungen verglichen. Ergebnisse: Bei einer spezifischen Aktivität von 370 MBq/ml konnten 0,3 Gy pro 1 min in 0,5 mm Abstand von der Ballonwand gemessen werden. Doppelmessungen wiesen eine Abweichung von 3% auf. Ein schneller Dosisabfall von 50% innerhalb von 0,5 mm bzw. von 90% innerhalb von 2,5 mm wurde beobachtet. Meßwerte und Berechnungen stimmten gut überein. Die Daten von Re-188 und Y-90 entsprechen sich weitgehend. Schlußfolgerung: Berechnungen über die Dosisverteilung von Re-188 stimmen mit TLD-Messungen gut überein. Bei einer spezifischen Aktivität von 1,85 GBq/ml können in 2-3 Minuten 10-15 Gy an der Gefäßwand einer Koronararterie appliziert werden. Gegenüber radioaktiven Stents oder radioaktiven Drähten bietet sich hiermit eine einfache Alternative für die Prävention der Restenose an.

Summary

Aim: Various radionuclides can be used for endovascular brachytherapy. A new concept is to inflate the balloon of a dilitation catheter with a radioactive solution. Re-188 can be eluated from a generator system and is available daily. The aim of this study was to obtain dosimetric data for this radionuclide. Methods: The dose decrease of Re-188 was calculated and measured with a TLD-system radial to a balloon catheter typically used in cardiology (diameter: 3 mm, length: 20 mm). Results: Using a specific acitivity of 370 MBq/ml a dose of 0,3 Gy could be achieved within 1 min in a TLD in contact with the balloon. Paired TLDs differed about 3%. A fast dose reduction of 50% and 10% were stated within 0.5 mm and 2.5 mm, respectively. Calculated and measured values were in good agreement. The data are comparable to those known for Y-90. Conclusion: Calculations of dose distribution are consistent with TLD measurements of Re-188. Using a specific acitivity of 1.85 GBq/ml, a dose of 10-15 Gy at the coronary artery wall can be achieved within 2-3 min. Compared to radioactive stents or wires the use of this liquid beta-emitter is a simple alternative for prevention of the restenosis following the angioplasty.

 
  • Literatur

  • 1 Amols HI, Zaider M, Weinberger J, Ennis R, Schiff PB, Reinstein LE. Dosimetrie considerations for catheter-based beta and gamma emitters in the therapy of neointimal hyperplasia in human coronary arteries. Int J Radiat Oncol Biol Phys 1996; 36: 913-21.
  • 2 Amols HI, Reinstein LE, Weinberger J. Dosimetry of a radioactive coronary balloon dilitation catheter for treatment of neointimal hyperplasia. Med Phys 1996; 23: 1783-8.
  • 3 Böttcher HD, Schopohl B, Liermann D, Kollath J, Adamietz IA. Endovascular irradiation – a new method to avoid recurrent stenosis after stent implantation in peripheral arteries: technique and preliminary results. Int J Radiat Oncol Biol Phys 1994; 29: 183-6.
  • 4 Califf RM, Fortin DF, Frid DJ. et al. Restenosis after coronary angioplasty: an overview. J Am Coll Cardiol 1991; 17: 2B-13B.
  • 5 Callahan AP, Rice DE, Knapp jr. FF Rhenium-188 for therapeutic applications from a alumina-based tungsten-188/rhenium-188 radionuclide generator. Nuc Compact 1989; 20: 3-6.
  • 6 Fenchel S, Kotzerke J, Grillenberger K, Reske SN. Pharmacodynamics of Tc99m-Pertechnetate and Re-188-Perrhenate after the oral application of Perchlorate [abstract]. Eur J Nucl Med 1997; 24: 965.
  • 7 Fishell TA, Kharma BK, Fischell DR. et al. Low-dose, ß-particle emission from “stent” wire results in complete, localized inhibition of smooth muscle cell proliferation. Circulation 1994; 90: 2956-63.
  • 8 Flühs D, Heintz M, Indenkampen F, Wieczo-rek C, Kolanoski H, Quast U. Direct reading measurement of absorbed dose with plastic scintillators – the general concept and applications to ophthalmic plaque dosimetry. Med Phys 1996; 23: 427-34.
  • 9 Guhlke S, Beets AL, Biersack HJ, Knapp Jr FF. Elution of Re-188 from W-188/Re-188 generators with salts of weak acids permits efficient concentration to low volumes using a new tandem cation/anion exchange. J Nucl Med 1997; 38: 125P.
  • 10 Hanke H, Strohschneider T, Oberhoff M, Betz E, Karsch KR. Time course of smooth muscle cell proliferation in the intimal and media of arteries following experimental angioplasty. Circul Res 1990; 67: 651-9.
  • 11 Hanke H, Haase KK, Hanke S. et al. Morphological changes and smooth muscle cell proliferation after experimental excimer laser treatment. Circulation 1991; 83: 1380-9.
  • 12 Hehrlein C, Gollan C, Dönges K. et al. Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 1995; 92: 1570-5.
  • 13 Huang DY, Schell MC, Weaver KA, Ling CC. Dose distribution of 125I sources in different tissues. Med Phys 1990; 17: 826-32.
  • 14 Knapp Jr FF, Mirzadeh S. The continuing important role of radionuclide generator systems for nuclear medicine. Eur J Nucl Med 1994; 21: 1151-65.
  • 15 Kuong E, Lang E. Strahlenbelastung invasiver kardialer Diagnostik: Größenordnung, Einflußfaktoren und Hinweise zur Minimierung der Strahlendosis. Z Kardiol 1996; 85: 543-52.
  • 16 Laird JR, Carter AJ, Kufs WM. et al. Inhibition of neointimal proliferation with low-dose irradiation from a ß-particle-emitting stent. Circulation 1996; 93: 529-36.
  • 17 Leimgruber PP, Roubin GS, Hollman J. et al. Restenosis after successful coronary angioplasty in patients with single-vessel disease. Circulation 1986; 73: 710-7.
  • 18 Liermann DD, Boettcher HD, Kollatch J. et al. Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoro-popliteal arteries. Cardiovasc Intervent Radiol 1994; 17: 12-6.
  • 19 Popowski Y, Verin V, Papirov I. et al. High dose rate brachytherapy for prevention of restenosis after percutaneous transluminal coronary angioplasty: preliminary dosimetric tests of a new source presentation. Int J Radiat Oncol Biol Phys 1995; 33: 211-5.
  • 20 Popowski Y, Verin V, Schwager M. et al. A novel system for intracoronary beta-irradiation: description and dosimetric results. Int J Radiat Oncol Biol Phys 1996; 36: 923-31.
  • 21 Schopohl B, Liermann D, Pohlit LJ. et al. 192IR endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiat Oncol Biol Phys 1996; 36: 835-40.
  • 22 Simpkin DJ, Mackie TR. EGS4 Monte Carlo determination of the beta dose kernel in water. Med Phys 1990; 17: 179-86.
  • 23 Stabin MG. Persönliche Mitteilung.
  • 24 Stabin MG, Evans JF. Radiation dose to the wall of blood vessels containing various radionuclides [abstract]. J Nucl Med 1996; 37: 229P.
  • 25 Teirstein P. ß-Radiation to reduce restenosis. Too little, too soon? [editorial]. Circulation 1997; 95: 1095-7.
  • 26 Teirstein PS, Massullo V, Jani S. et al. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med 1997; 336: 1697-703.
  • 27 Verin V, Urban P, Popowski Y. et al. Feasibility of intracoronary ß-irradiation to reduce restenosis after balloon angioplasty. A clinical pilot study. Circulation 1997; 95: 1138-44.
  • 28 Waksman R, Robinson KA, Crocker IR. et al. Intracoronary low-dose ß-irradiation inhibits neointima formation after coronary artery balloon injury in the swine restenosis model. Circulation 1995; 92: 3025-31.
  • 29 Waksman R. Local catheter-based intracoronary radiation therapy for restenosis. Am J Cardiol 1996; 78: 23-8.
  • 30 Weinberger J, Amols H, Ennis RD, Schwartz A, Wiedermann JG, Marboe C. Intracoronary irradiation: dose response for the prevention of restenosis in swine. Int J Radiat Oncol Biol Phys 1996; 36: 767-75.
  • 31 Wiedermann JG, Marboe C, Amols H, Schwartz A, Weinberger J. Intracoronary irradiation markedly reduces neointimal proliferation after balloon angioplasty in swine: persistent benefit at 6-month follow-up. J Am Coll Cardiol 1995; 25: 1451-6.