Nuklearmedizin 2000; 39(02): 37-42
DOI: 10.1055/s-0038-1632242
Original Article
Schattauer GmbH

Heterogeneity of Cerebral Blood Flow: a Fractal Approach

Heterogenität der Hirndurchblutung: eine fraktale Annäherung
J. T. Kuikka
1   Departments of Clinical Physiology and Neurology, Kuopio University Hospital and Niuvanniemi Hospital, Kuopio, Finland
,
P. Hartikainen
1   Departments of Clinical Physiology and Neurology, Kuopio University Hospital and Niuvanniemi Hospital, Kuopio, Finland
› Author Affiliations
Further Information

Publication History

Received: 06 April 1999

in revised form: 05 August 1999

Publication Date:
02 February 2018 (online)

Summary

Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and singlephoton emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (= coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17 ± 0.05 (mean ± SD) for the left hemisphere and 1.15 ± 0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04 ± 0.03 than in healthy controls. Conclusion: Within the limits of spatial resolution of SPECT, the heterogeneity of brain blood flow is well characterized by a fractal dimension. Fractal analysis may help brain scientists to assess age-, sex- and laterality-related anatomic and physiological changes of brain blood flow and possibly to improve precision of diagnostic information available for patient care.

Zusammenfassung

Ziel: Unter Einsatz einer fraktalen Annäherung und SPECT wird die Heterogenität der regionalen Hirndurchblutung demonstriert. Methode: Tc-99m-ECD wurde nach intravenöser Injektion bei zehn Gesunden sowie bei zehn Patienten mit Demenz vom Frontallappen-Typ eingesetzt. Aus dem SPECT-Umlauf wurden transaxiale, sagittale und koronare Schnitte rekonstruiert. 265 symmetrische Regions of Interest wurden im Gebiet der funktionellen grauen Substanz für jede Hemisphäre markiert. Die fraktale Analyse wurde eingesetzt zur Bestimmung der räumlichen Heterogenität der Hirndurchblutung als Funktion der ROI-Anzahl. Ergebnisse: Die relative Streuung (Variationskoeffizient der regionalen Durchblutung) war bei Gesunden fraktalähnlich geordnet und konnte durch eine Fraktaldimension von 1,17 ± 0,05 (Mittelwert ± Streubreite) für die linke Hemisphäre und von 1,15 ± 0,04 für die rechte Hemisphäre charakterisiert werden. Dabei entspricht eine Fraktaldimension von 1,0 einer völlig gleichmäßigen Durchblutung, ein Wert von 1,5 zeigt eine vollständig zufällige Verteilung an. Patienten mit Demenz des Frontallappen-Typs wiesen dagegen eine signifikant niedrigere fraktale Dimension von 1,04 ± 0,03 auf. Schlußfolgerung: Innerhalb der räumlichen Auflösungsgrenzen von SPECT kann die Heterogenität der Hirndurchblutung durch eine Fraktaldimension gut charakterisiert werden. Eine fraktale Analyse kann Hirnforschern bei der Abschätzung von Alters-, Geschlechtsund physiologischen Veränderungen sowie bei der anatomischen Seitenbetonung der Hirndurchblutung behilflich sein und möglicherweise auch die Genauigkeit der diagnostischen Information in der Patientenversorgung verbessern.

 
  • References

  • 1 Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 1989; 65: 578-90.
  • 2 Bassingthwaighte JB, Liebovitch LS, West JB. Fractal Physiology. New York. NY: Oxford University Press; 1994
  • 3 Beard DA, Bassingthwaighte JB. Power-law kinetics of tracer washout from physiological systems. Ann Biomed Eng 1998; 26: 775-9.
  • 4 Bullmore E, Brammer M, Harvey I, Persaud R, Murray R, Ron M. Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manicdepressive patients. Psychol Med 1994; 24: 771-81.
  • 5 Cook MJ, Free SL, Manford MR, Fish DR, Shorvon SD, Stevens JM. Fractal description of cerebral cortical patterns in frontal lobe epilepsy. Eur Neurol 1995; 35: 327-35.
  • 6 Free SL, Sisodiya SM, Cook MJ, Fish DR, Shorvon SD. Three-dimensional fractal analysis of the white-matter surface from magnetic resonance images of the human brain. Cereb Cortex 1996; 6: 830-6.
  • 7 Glenny RW. Heterogeneity of pulmonary perfusion characterized by fractals and spatial correlations. In: Bioengineering Approaches to Pulmonary Physiology and Medicine. Khoo K. (eds). New York. NY: Plenum Press; 1996: 197-211.
  • 8 Hentschel F, Besthorn C, Schmidt MH. The fractal dimension as an imaging parameter in CT scans of patients with anorexia nervosa before and after therapy. Z Kinder Jugendpsychiatr Psychother 1997; 25: 201-6.
  • 9 Karhunen LJ, Lappalainen RI, Vanninen EJ, Kuikka JT, Uusitupa MIJ. Regional cerebral blood flow during food exposure in obese and normal-weight women. Brain 1997; 120: 1675-84.
  • 10 Kleen M, Habler O, Zwissler B, Messmer K. Program for assessment of spatial heterogeneity of regional organ blood flow. Comput Methods Programs Biomed 1998; 55: 51-7.
  • 11 Kuikka JT, Levin M, Bassingthwaighte JB. Multiple tracer dilution estimates of D-. and 2-deoxy-D-glucose uptake by the heart. Am J Physiol 1986; 250: H29-H40.
  • 12 Kuikka JT, Bassingthwaighte JB, Henrich MM, Feinendegen LE. Mathematical modelling in nuclear medicine. Eur J Nucl Med 1991; 18: 351-62.
  • 13 Kuikka JT, Tenhunen-Eskelinen M, Jurvelin J, Kiiliäinen H. Physical performance of the Siemens MultiSPECT 3 gamma camera. Nucl Med Commun 1993; 14: 490-7.
  • 14 Kuikka JT. Effect of tissue heterogeneity on quantification in positron emission tomography. Eur J Nucl Med 1995; 22: 1457-8.
  • 15 Kuikka JT, Tiihonen J, Karhu J, Bergström KA, Räsänen P. Fractal analysis of striatal dopamine reuptake sites. Eur J Nucl Med 1997; 24: 1085-90.
  • 16 Kuikka JT. Interactive compartmental modeling. J Nucl Med 1998; 39: 1649.
  • 17 Kuikka JT, Tiihonen J. Fractal analysis – a new approach in brain receptor imaging. Ann Med 1998; 30: 242-8.
  • 18 Kuikka JT, Tiihonen J, Bergström KA. et al. Abnormal structure of human striatal dopamine reuptake sites in habitually violent alcoholic offenders: a fractal analysis. Neurosci Lett 1998; 253: 195-7.
  • 19 Kuikka JT, Yang J, Karhu J. et al. Imaging the structure of the striatum: a fractal approach to SPECT image interpretation. Physiol Meas 1998; 19: 367-74.
  • 20 Kuikka JT, Länsimies E. A fractal approach for evaluation of pulmonary circulation in man at rest and during exercise. Clin Physiol 1999; 19: 107-10.
  • 21 Lehtovirta M, Soininen H, Laakso MP. et al. SPECT and MRI analysis in Alzheimer’s disease: relation to apolipoprotein E E4 allele. J Neurol Neurosurg Psychiatry 1996; 60: 644-9.
  • 22 Liebovitch LS, Töth T. A fast algorithm to determine fractal dimensions by box counting. Phys Lett 1989; 141 A: 386-90.
  • 23 Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging: Potential applications of fractals and chaos theory to senescence. JAMA 1992; 267: 1806-9.
  • 24 Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 1967; 156: 636-8.
  • 25 Nelson T. Fractals physiologic complexity, scaling, and opportunities for imaging. Invest Radiol 1990; 25: 1140-8.
  • 26 Quarles RP, Mintum MM, Larson KB, Markham J, MacLeod AM, Raichle ME. Measurement of regional cerebral blood flow with positron emission tomography: a comparison of [15O]water to [11C]butanol with distributed parameter and compartment models. J Cereb Blood Flow Metab 1993; 13: 733-47.
  • 27 Rose CP, Coresky CA. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ Res 1976; 39: 541-54.
  • 28 Talairach J, Tournoux DP. Referentially Oriented Cerebral MRI Anatomv. New York: Thieme; 1993
  • 29 Teich MC. Fractal character of the auditory neural spike. IEEE Trans Biomed Eng 1989; 36: 150-60.
  • 30 Tiihonen J, Kuikka J, Räsänen P. et al. Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorder: a fractal analysis. Mol Psychiatry 1998; 2: 463-71.
  • 31 Wilke N, Kroll K, Merkle H. et al. Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. Mag Res Med 1995; 5: 227-37.
  • 32 Zierler KL. A critique of compartmental analysis. Ann Rev Biophys Bioeng 1981; 10: 531-62.
  • 33 Östergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Res Med 1996; 36: 726-36.