Subscribe to RSS
DOI: 10.1055/s-0038-1632338
PET and SPECT in Medically Non-Refractory Complex Partial Seizures
Temporal Asymmetries of Glucose Consumption, Benzodiazepine Receptor Density, and Blood FlowPET und SPECT bei medikamentösnichtrefraktären komplex-fokalen AnfällenTemporale Asymmetrien des Glukoseverbrauchs, der Benzodiazepin-Rezeptordichte und des BlutflussesPublication History
Received:
27 April 1998
in revised Form:
26 June 1998
Publication Date:
03 February 2018 (online)
Zusammenfassung
Ziel: Im Gegensatz zu den medikamentös-refraktären komplex-fokalen Epilepsien (CPS) wurden zerebrale Perfusion und Metabolismus bei Patienten mit nichtrefraktären Epilepsien kaum untersucht. Ziel dieser Studie war die Untersuchung der Häufigkeit temporaler Asymmetrien des regionalen zerebralen Glukoseverbrauchs (rCMRGIc), der regionalen zerebralen Perfusion (rCBF) und der regionalen zerebralen Benzodi- azepin-Rezeptordichte (BRD) bei dieser Patientengruppe. Methoden: Es wurden 49 Patienten mit medikamentös-nichtrefraktären, kryptogenen CPS untersucht (Alter: 36,0 ± 16,1 Jahre). Der rCMRGIc wurde mit F-18-FDG-PET (FDG), der rCBF mit Tc-99m-ECD-SPECT (ECD) und die BRD mit 1-123-Jomazenil-SPECT (IMZ) untersucht. Alle drei Untersuchungen wurden interiktual und binnen vier Wochen bei jedem Patienten durchgeführt. Die Dauer der Epilepsie betrug zwischen 0,1 und 42 Jahre (Median 4,0 Jahre). Die SPECT-Studien wurden mit der Dreikopfkamera Multispect 3, die PET-Studien mit dem PET-System ECAT EXACT 47 durchgeführt. Mit Hilfe von Linienprofilen wurden rCMRGIc, rCBF und BRD in vier temporalen Regionen bestimmt; die daraus errechneten Asymmetrie-Indizes (ASY) wurden mit den 95%-Konfidenzin- tervallen von Kontrollpersonen verglichen. Ergebnisse: Von den 49 Patienten wiesen 35 (71%) einen signifikant pathologischen ASY in mindestens einer Region auf; der rCMRGIc war asymmetrisch bei 41 % der Patienten, die BRD bei 29%, und der rCBF bei 24%. Bei einem Patienten waren alle drei Variablen pathologisch, bei zwei der rCMRGIc und die BRD, bei drei der rCMRGIc und der rCBF und bei vier weiteren Patienten der rCBF und die BRD. Eine isolierte Asymmetrie des rCMRGIc fand sich in 14, der BRD in 7 und des rCBF in 4 Fällen. Es gab keine Diskrepanzen in der Latéralisation zwischen den drei Methoden. Schlußfolgerung: Die Mehrzahl der Patienten mit medikamentös- nichtrefraktären CPS weist eine Abnormalität des rCMRGIc, der BRD oder des rCBF auf. In diesem Patientenkollektiv zeigt FDG-PET am häufigsten eine temporale Auffälligkeit.
Summary
Aim: In contrast to medically refractory complex partial seizures (CPS), only limited knowledge exists on cerebral perfusion and metabolism in medically non-refractory CPS. The aim of this study was to investigate the frequency of temporal asymmetries in regional cerebral glucose consumption (rCMRGIc), regional cerebral blood flow (rCBF), and regional cerebral benzodiazepine receptor density (BRD) in this group of patients. Methods: The study included 49 patients with medically non-refractory cryptogenic CPS (age: 36.0 ± 16.1 years). rCMRGIc was studied with F-18-FDG-PET (FDG), rCBF with Tc-99m-ECD-SPECT (ECD), and BRD with l-123-iomazenil-SPECT (IMZ). All studies were performed interictal- ly and within four weeks in each patient. Duration of epilepsy ranged from 0.1 to 42 years (median 4.0 years). SPECT was performed with the triple-headed SPECT camera Multispect 3, PET with the PET camera ECAT EXACT 47. Using linear profiles, glucose consumption, as well as uptake of ECD and IMZ, were measured in four temporal regions of interest (ROIs), and asymmetry indices were calculated (ASY). The results were compared to 95% confidence intervals determined in control subjects. Results: Thirty-five of the 49 (71%) patients had at least one significantly elevated ASY; temporal rCMRGIc was asymmetrical in 41 % of the patients, temporal BRD in 29%, and temporal rCBF in 24%. One patient had an asymmetry of all three variables, two of temporal rCMRGIc and BRD, three of temporal rCMRGIc and rCBF, and another four of rCBF and BRD. Fourteen patients had an isolated temporal asymmetry in rCMRGIc, seven in BRD, and four in rCBF. A discrepancy in lateralization between the three modalities was not observed. Conclusion: The majority of patients with medically non-refractory CPS have focal abnormalities of blood flow and metabolism in their temporal lobe. In this group of patients, FDG-PET demonstrates abnormalities with the highest frequency of the three modalities studied, followed by IMZ-SPECT, and ECD-SPECT.
-
References
- 1 Abou-Khalil BW, Siegel GJ, Sackellares JC, Gilman S, Hichwa R, Marshall R. Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Ann Neurol 1987; 22: 480-6.
- 2 Arnold S, Schiaug G, Niemann H. et al. Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 1996; 46: 1422-30.
- 3 Bartenstein P, Ludolph A, Schober O. et al. Benzodiazepine receptors and cerebral blood flow in partial epilepsy. Eur J Nucl Med 1991; 18: 111-8.
- 4 Chang L. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sei 1978; 26 (02) 2780-9.
- 5 Cordes M, Christie W, Henkes H. et al. Focal epilepsies: HM-PAO SPECT compared with CT, MR, and EEG. J Comput Assist Tomogr 1990; 14: 402-9.
- 6 Debets RM, Sadzot B, van Isselt JW. et al. Is C-ll -flumazenil PET superior to F-18-FDG PET and 123-I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy?. J Neurol Neurosurg Psychiatry 1997; 62: 141-50.
- 7 Debets RM, van Veelen CW, Maquet P. et al. Quantitative analysis of 18/FDG-PET in the presurgical evaluation of patients suffering from refractory partial epilepsy. Comparison with CT, MRI, and combined subdural and depth. EEG. Acta Neurochir Suppl 1990; 50: 88-94.
- 8 Duncan S, Gillen GJ, Brodie MJ. Lack of effect of concomitant clobazam on interictal 123-I-iomazenil SPECT. Epilepsy Res 1993; 15: 61-6.
- 9 Engel Jr. J, Kühl DE, Phelps ME, Crandall PH. Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann Neurol 1982; 12: 529-37.
- 10 Ferstl FJ, Cordes M, Cordes I. et al. 123-1- iomazenil-SPECT in patients with focal epilepsies – a comparative study with 99m-Tc-HMPAO-SPECT, CT and MR. Adv Exp Med Biol 1991; 287: 405-12.
- 11 Fink GR, Pawlik G, Stefan H, Pietrzyk U, Wienhard K, Heiss W-D. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sei 1996; 137: 28-34.
- 12 Gaillard WD, Bhatia S, Bookheimer SY, Fazilat S, Sato S, Theodore WH. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 1995; 45: 123-6.
- 13 Gaillard WD, Zeffiro T, Fazilat S, DeCarli C, Theodore WH. Effect of valproate on cerebral metabolism and blood flow: an 18F-2- deoxyglucose and 150 water positron emission tomography study. Epilepsia 1996; 37: 515-21.
- 14 Grünwald F, Durwen HF, Bockisch A. et al. Technetium-99m-HMPAO brain SPECT in medically intractable temporal lobe epilepsy: a postoperative evaluation. J Nucl Med 1991; 32: 388-94.
- 15 Grünwald F, Menzel C, Pavics L. et al. Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD. J Nucl Med 1994; 35: 1896-901.
- 16 Hamacher K, Coenen HH, Stöcklin G. Efficient stereospeeifie synthesis of no-carrier- added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 1986; 27: 235-8.
- 17 Ho SS, Berkovic SF, Berlangieri SU. et al. Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ann Neurol 1995; 37: 738-45.
- 18 Kurokawa K, Jibiki I, Matsuda H. et al. Comparison of benzodiazepine receptor and regional cerebral blood flow imaging of epileptiform foci in hippocampal kindled rabbits: a study with in vivo double tracer autoradiography using 125-I-iomazenil and 99mTc-HMPAO. Brain Res 1994; 642: 303-10.
- 19 Kuwert T, Stodieck SR, Puskás C. et al. Reduced GABA a receptor density contralateral to a potentially epileptogenic MRI abnormality in a patient with complex partial seizures. Eur J Nucl Med 1996; 23: 95-8.
- 20 Leiderman DB, Balish M, Bromfield EB, Theodore WH. Effect of valproate on human cerebral glucose metabolism. Epilepsia 1991; 32: 417-22.
- 21 Markand ON, Salanova V, Worth R, Park HM, Wellman HN. Comparative study of interictal PET and ictal SPECT in complex partial seizures. Acta Neurol Scand 1997; 95: 129-36.
- 22 Mastin ST, Drane WE, Gilmore RL. et al. Prospective localization of epileptogenic foci: comparison of PET and SPECT with site of surgery and clinical outcome. Radiology 1996; 199: 375-80.
- 23 Matheja P, Diehl B, Kuwert T. et al. Measurement of temporal asymmetries of glucose consumption using linear profiles: reproducibility and comparison with visual analysis. Nuklearmedizin 1998; 37: 43-8.
- 24 Pawlik G, Holthoff VA, Kessler J. et al. Positron emission tomography findings relevant to neurosurgery for epilepsy. Acta Neurochir Suppl 1990; 50: 84-7.
- 25 Quesney L, Risinger M, Shewmon A. Extracranial EEG Evaluation. Engel Jr J. Surgical Treatment of the Epilepsies (2nd edition).. New York: Raven Press; 1993: 173-95.
- 26 Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863-6.
- 27 Savic I, Svanborg E, Thorell JO. Cortical benzodiazepine receptor changes are related to frequency of partial seizures: a positron emission tomography study. Epilepsia 1996; 37: 236-44.
- 28 Sjöholm H, Rosén I, Elmqvist D. Role of I-123-Iomazenil SPECT imaging in drug resistant epilepsy with complex partial seizures. Acta Neurol Scand 1995; 92: 41-8.
- 29 Spencer SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia 1994; 35 (Suppl. 06) S72-89.
- 30 Staedt J, Stoppe G, Kögler A, Steinhoff BJ. Changes of central benzodiazepine receptor density in the course of anticonvulsant treatment in temporal lobe epilepsy. Seizure 1995; 4: 49-52.
- 31 Stefan H, Pawlik G, Böcher-Schwarz HG. et al. Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 1987; 234: 377-84.
- 32 Swartz BE, Tomiyasu U, Delgado-Escueta AV, Mandelkern M, Khonsari A. Neuroimaging in temporal lobe epilepsy: test sensitivity and relationships to pathology and postoperative outcome. Epilepsia 1992; 33: 624-34.
- 33 Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain.. Stuttgart: Thieme Medical Publishers; 1988
- 34 Tanaka F, Yonekura Y, Ikeda A. et al. Presurgical identification of epileptic foci with iodine-123 iomazenil SPET: comparison with brain perfusion SPET and FDG PET. Eur J Nucl Med 1997; 24: 27-34.
- 35 Theodore WH. Antiepileptic drugs and cerebral glucose metabolism. Epilepsia 1988; 29 (Suppl. 02) S48-55.
- 36 Theodore WH, Katz D, Kufta C. et al. Pathology of temporal lobe foci: correlation with CT, MRI, and PET. Neurology 1990; 40: 797-803.
- 37 Valk PE, Laxer KD, Barbaro NM, Knezevic S, Dillon WP, Budinger TF. High-resolution (2.6-mm) PET in partial complex epilepsy associated with mesial temporal sclerosis. Radiology 1993; 186: 55-8.
- 38 van Huffelen AC, van Isselt JW, van Veelen CW. et al. Identification of the side of epileptic focus with 123-I-iomazenil SPECT. A comparison with F-18-FDG-PET and ictal EEG findings in patients with medically intractable complex partial seizures. Acta Neurochir Suppl 1990; 50: 95-9.
- 39 Venz S, Cordes M, Schmitz B. et al. 1231- iomazenil- and 99m-Tc-HMPAO in the diagnosis of focal epilepsies: comparison of treated and untreated patients. Nuklearmedizin 1994; 33: 1-7.
- 40 Venz S, Cordes M, Straub HB. et al. Preoperative evaluation of medically intractable partial seizures using 123-I-iomazenil SPECT. Comparison with video/EEG-monitoring and post-operative results. Nuklearmedizin 1994; 33: 189-93.
- 41 Woesler B, Kuwert T, Morgenroth C. et al. Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123-I-a-methyl tyrosine and PET with F-18-deoxyglucose. Eur J Nucl Med 1997; 24: 428-34.