Methods Inf Med 1993; 32(05): 373-381
DOI: 10.1055/s-0038-1634947
Original Article
Schattauer GmbH

A Modular Knowledge Base for the Follow-Up of Clinical Protocols

A. Barreiro
1   Dept. Computatión, Facultade de Informática, Universidade da Coruña, Madrid, Spain
,
R. P. Otero
1   Dept. Computatión, Facultade de Informática, Universidade da Coruña, Madrid, Spain
,
R. Marín
2   Dept. Electrónica y Computatión, Facultade de Física, Universidade de Santiago, Madrid, Spain
,
J. Mira
3   Dept. Informática y Automática, Facultad de Ciencias, UNED, Madrid, Spain
› Author Affiliations
This work has been supported, in part, by the European Community ESPRIT I Programme P1592 and, in part, by the Spanish CICYT project TIC88-0315 and XUGA project 10504A-92.
Further Information

Publication History

Publication Date:
08 February 2018 (online)

Abstract

From the knowledge engineering point of view, the observation of patients subjected to clinical protocols of therapy constitutes a domain characterized by the existence of strongly structured knowledge. We have approached the problem from the perspective of a homogeneous and modular knowledge representation theory, based on the concept of Generalized Magnitude. This concept arises from identifying and collecting all possible facts of a domain established a priori, and being inspired by the concept of physical magnitudes. The Generalized Magnitudes scheme includes temporal extensions necessary to solve a medical problem for which exists a therapy and a follow-up plan with temporal specifications, and also facilitates the creation of advisory expert systems.

 
  • REFERENCES

  • 1 Becker TM. Cancer Chemotherapy: A manual for Nurses. Boston MA: Little, Brown and Company; 1981
  • 2 Simon R. The design and analysis of clinical trials. In: Cancer in the Young. Levine AS. ed. New York: Masson Publishing; 1982: 391-402.
  • 3 Musen MA, Fagan LM, Combs DM, Short-liffe EH. Use of a domain model to drive an interactive knowledge-editing tool. Int J Man Mach Stud 1987; 26: 105-21.
  • 4 Musen MA. An editor for the conceptual models of interactive knowledge acquisition tools. Int J Man Mach Stud 1989; 31: 673-98.
  • 5 Tu SW, Kahn MG, Musen MA. et al. Episodic skeletal plan refinement based on temporal data. Commun ACM 1989; 32: 1439-55.
  • 6 Mira J, Otero RP, Barro S. et al. On knowledge based systems in CCU’s: monitoring and patients follow-up. In: Knowledge Based Systems in Medicine: Methods, Applications and Evaluation. Lecture Notes in Medical Informatics. Talmon JL, Fox J. (eds). Berlin: Springer Verlag; 1991: 174-92.
  • 7 White R, Grant A, Cramp DG. Small Cell Lung Cancer protocol comparison. TAO Esprit Project 1592 Internal Report. March 1989
  • 8 Otero RP. Medtool: Una Herramienta para el Desarrollo de Sistemas Expertos. (Ph.D Thesis, in Spanish). Universidad de Santiago, Santiago de Compostela; 1991
  • 9 Shoham Y. Reasoning about Change. Time and Causation from the Standpoint of Artificial Intelligence. Cambridge MA: MIT Press; 1988
  • 10 Otero RP, Santos J, Barreiro A, Mira J, Marín R. Visualizing the inference network in Medtool. In: Proceedings of Fifth International Symposium on Knowledge Engineering. Sevilla: 1992: 82-7.
  • 11 Barreiro A, Otero RP, Marín R, Delgado AE, Mira J. Follow-up of patients included in oncology protocols using Medtool. In: Proceedings V Mediterranean Conference on Medical and Biological Engineering. Patras: 1989: 280-1.
  • 12 Jones S. Graphical interfaces for knowledge engineering: an overview of relevant literature. Knowl Engin Rev 1988; 03: 221-47.