Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00035024.xml
Thromb Haemost 1977; 37(03): 464-470
DOI: 10.1055/s-0038-1649256
DOI: 10.1055/s-0038-1649256
Original Article
A Simple and Practical Method for Isolation of an Early Plasmin Degradation Product of Human Fibrinogen
Further Information
Publication History
Received 10 August 1976
Accepted 10 January 1977
Publication Date:
03 July 2018 (online)
Summary
One of the earliest plasmin degradation products of human fibrinogen, so-called fragment A, was isolated by a simple method.
This peptide has a molecular weight of approximately 22,500, migrating electrophoretically at beta-area, and its amino acid composition shows a very high content of glycine, serine, threonine and proline, and a markedly low content of hydrophobic amino acids. This fragment does not react against anti-fibrinogen; however, the anti-serum of this fragment reacts strongly with fibrinogen.
-
References
- 1 Blombäck B, Blombäck M. The molecular structure of fibrinogen. Annals of The New York Academy of Sciences 1972; 202: 77
- 2 Doolittle R. F, Schubert D, Schwartz S. A. Amino acid studies on artiodactyl fibrino-peptides. Archives of Biochemistry and Biophysics 1967; 118: 456
- 3 Furlan M, Beck E. A. Plasmic degradation of human fibrinogen. 1. Structural characterization of degradation products. Biochimica et Biophysica Acta 1972; 263: 631
- 4 Gaffney P. J, Dobos P. A structural aspect of human fibrinogen suggested by its plasmin degradation. FEBS Letters 1971; 15: 13
- 5 Harfenist E. J, Canfield R. E. Degradation of fibrinogen by plasmin. Isolation of an early cleavage product. Biochemistry 1975; 14: 4110
- 6 Kockum C. Radioimmunoassay of fibrinopeptide A-Clinical applications. Thrombosis Research 1976; 8: 225
- 7 Marder V. J, Schulman N. R, Carroll W. R. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. Journal of Biological Chemistry 1969; 244: 2111
- 8 Nossel H. L, Younger L. R, Wilner G. D, Procupez T, Canfield R. E, Butler Jr. V. P. Radioimmunoassay of human fibrinopeptide A. Proceedings of the National Academy of Sciences (USA) 1971; 68: 2350
- 9 Nossel H. L, Yudelman I, Canfield R. E, Butler V. P, Spanondis Jr. K, Wilner G. D, Qureshi G. D. Measurement of fibrinopeptide A in human blood. Journal of Clinical Investigation 1974; 54: 43
- 10 Nussenzweig V, Seligmann M, Pelmont J, Grabar P. Les produits de dégradation du fibrinogene humain par la plasmine.1.-Séparation et proprétés physico-chemiques. Annales de l’Institut Pasteur, Paris 1961; 100: 377
- 11 Ouchterlony Ö. Immunodiffusion and Immunoelectrophoresis. Handbook of Experimental Immunology. Blackwell Scientific Publications; Oxford.: 1967
- 12 Pizzo S. V, Schwarz M. L, Hill R. L, McKee P. A. The effect of plasmin on the subunit structure of human fibrinogen. Journal of Biological Chemistry 1972; 247: 636
- 13 Spackman D. H, Stein W. H, Moore S. Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry 1958; 30: 1190
- 14 Takagi T, Doolittle R. F. Amino acid sequence studies on the α Chain of human fibrinogen. Location of four plasmin attack points and a covalent cross-Unking site. Biochemistry 1975; a 14: 5149
- 15 Takagi T, Doolittle R. F. Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: Amino-terminal sequences of intermediate and terminal fragments. Biochemistry 1975; b 14: 940
- 16 Weber K, Osborn M. The reliability of molecular weight determinations by dodecyl sul-fate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry 1969; 244: 4406