Subscribe to RSS
DOI: 10.1055/s-0038-1649796
Comparison of Immunological and Functional Assays for Measurement of Soluble Fibrin
Publication History
Received 28 October 1994
Accepted after resubmission 06 March 1995
Publication Date:
04 September 2018 (online)
Summary
Various assays have been developed for quantitation of soluble fibrin or fibrin monomer in clinical plasma samples, since this parameter directly reflects in vivo thrombin action on fibrinogen. Using plasma samples from healthy blood donors, patients with cerebral ischemic insult, patients with septicemia, and patients with venous thrombosis, we compared two immunologic tests using monoclonal antibodies against fibrin-specific neo-epitopes, and two functional tests based on the cofactor activity of soluble fibrin complexes in tPA-induced plasminogen activation. Test A (Enzymun®-Test FM) showed the best discriminating power among normal range and pathological samples. Test B (Fibrinostika® soluble fibrin) clearly separated normal range from pathological samples, but failed to discriminate among samples from patients with low grade coagulation activation in septicemia, and massive activation in venous thrombosis. Functional test C (Fibrin monomer test Behring) displayed good discriminating power between normal and pathological range samples, and correlated with test A (r = 0.61), whereas assay D (Coa-Set® Fibrin monomer) showed little discriminating power at values below 10 μg/ml and little correlation with other assays. Standardization of assays will require further characterization of analytes detected.
-
References
- 1 Bettelheim FR, Bailey K. The products of the action of thrombin on fibrinogen. Biochim Biophys Acta 1952; 9: 578-579
- 2 Lorand L. Fibrino-peptide. Biochem J 1952; 52: 200-203
- 3 Laudano AP, Cottrell BA, Doolittle RF. Synthetic peptides modeled on fibrin polymerization sites. Ann N Y Acad Sci 1983; 408: 315-329
- 4 Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad Sci USA 1980; 77: 1374-1378
- 5 Weisel JW. Fibrin assembly Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J 1986; 50: 1079-1093
- 6 Hafter R, von Hugo R, Baumgärtner M, Hiller FK, Graeff H. Temperature dependent dissociation of soluble fibrin monomer complexes demonstrated by agarose gel filtration. Thromb Res 1980; 20: 325-333
- 7 Muller Berghaus G, Mahn I, Krell W. Formation and dissociation of soluble fibrin complexes in plasma at 20° C and at 37° C. Thromb Res 1979; 14: 561-572
- 8 Preissner KT, Rotker J, Selmayr E, Fasold H, Muller Berghaus G. Influence of fibrinogen on fibrin polymerization. Ultracentrifugation studies Biochim Biophys Acta 1985; 829: 358-364
- 9 Rotker J, Preissner KT, Muller Berghaus G. Soluble fibrin consists of fibrin oligomers of heterogeneous distribution. Eur J Biochem 1986; 155: 583-588
- 10 Heene DL, Matthias FR. Adsorption of fibrinogen derivatives on insolubilized fibrinogen and fibrinmonomer. Thromb Res 1973; 2: 137-154
- 11 Matthias FR, Heene DL, Konradi E. Behavior of fibrinogen and fibrinogen degradation products towards insolubilized fibrinogen and fibrin monomer. Thromb Res 1973; 3: 657-64
- 12 Selmayr E, Mahn I, Muller Berghaus G. Crosslinking of soluble fibrin and fibrinogen. Thromb Res 1985; 39: 467-474
- 13 Pacella BL J, Hui KY, Haber E, Matsueda GR. Induction of fibrin-specific antibodies by immunization with synthetic peptides that correspond to amino termini of thrombin cleavage sites. Mol Immunol 1983; 20: 521-527
- 14 Scheefers Borchel U, Muller Berghaus G, Fuhge P, Eberle R, Heimburger N. Discrimination between fibrin and fibrinogen by a monoclonal antibody against a synthetic peptide. Proc Natl Acad Sci USA 1985; 82: 7091-7095
- 15 Schielen WJ, Voskuilen M, Adams PJ, Tesser GI, Nieuwenhuizen W. Structural requirements of fibrinogen A alpha-(148-160) for the enhancement of the rate of plasminogen activation by tPA. Blood Coagul Fibrinolysis 1990; 1: 521-524
- 16 Schielen WJ, Adams HP, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A alpha-(154-159) of fibrinogen is capable of accelerating the t-PA catalysed activation of plasminogen. Blood Coagul Fibrinolysis 1991; 2: 465-470
- 17 Mao SJ, Rechtin AE, Krstenansky JL, Jackson RL. Characterization of a monoclonal antibody specific to the amino terminus of the alpha-chain of human fibrin. Thromb Haemost 1990; 63: 445-448
- 18 Dempfle CE, Dollman M, Lill H, Puzzovio D, Dessauer A, Heene DL. Binding of a new monoclonal antibody against N-terminal heptapeptide of fibrin alpha-chain to fibrin polymerization site ‘A’: effects of fibrinogen and fibrinogen derivatives, and pretreatment of samples with NaSCN. Blood Coagul Fibrinolysis 1993; 4: 79-86
- 19 Lill H, Spannagl M, Trauner A, Schramm W, Schuller D, Ofenloch Haehnle B, Draeger B, Naser W, Dessauer A. A new immunoassay for soluble fibrin enables a more sensitive detection of the activation state of blood coagulation in vivo. Blood Coagul Fibrinolysis 1993; 4: 97-102
- 20 Schielen WJ, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A alpha-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci USA 1989; 86: 8951-8954
- 21 Halvorsen S, Skjonsberg OH, Ruyter R, Godal HC. Comparison of methods for detecting soluble fibrin in plasma. An in vitro study Thromb Res 1990; 57: 489-497
- 22 Halvorsen S, Skjonsberg OH, Godal HC. Comparison of methods for detecting soluble fibrin in plasma from patients with venous thromboembolism. Thromb Res 1991; 61: 341-348
- 23 Lane DA, Siodlak M, Thompson E, Allen Mersh TG. Clearance of human desaminotyrosyl fibrinopeptide A from the rat circulation: role of kidney and proteolytic enzymes. Thromb Res 1982; 26: 73-82
- 24 Godal HC, Kierulf P. Precipitation of fibrinogen-derived material by protamine. Scand J Haematol Suppl 1971; 13: 163-164
- 25 Wieding JU, Eisinger G, Kostering H. Diagnosis of disseminated intravascular coagulation: the value of soluble fibrin, D-dimers and fibrin(ogen) split products. Klin Wochenschr 1989; 67: 764-773
- 26 Wieding JU, Hosius C. Determination of soluble fibrin: a comparison of four different methods. Tliromb Res 1992; 05: 745-756
- 27 Gurewich V, Hulchison L. Detection of intravascular coagulation by a serial dilution protamine sulphate test. Ann Intern Med 1971; 75: 895-902
- 28 Niewiarowski S, Gurewieh V. Laboratory identification of intravascular coagulation. J Lab Cin Med 1971; 77: 665-676
- 29 Wieding JU, Eisinger G, Kästering H. Determination of soluble fibrin by turbidimetry of the prolamine sulphate paraeoagulation. Excerpta mediea 1987 745: 187-190
- 30 Ochler G, Klaus H, Stotzer KE, Spanuth L. Detection of soluble fibrin monomer complexes. Comparison of a haemagglutination assay with the ethanol gelation test Folia Haematol Leipz 1988; 115: 278-283
- 31 Laudano AP, Doolittle RE. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites and species differences Biochemistry 1980; 19: 1013-1019
- 32 Nieuwenhuizen W, Schielen WJ, Yonekawa O, Tesser G, Voskuilen M. Studies on the localization and accessibility of sites in fibrin which are involved in the acceleration of the activation of plasminogen by tissue-type plasminogen activator. Adv Exp Med Biol 1990; 281: 83-91
- 33 Spannagl M, Trauner A, Birg A, Frank D, Hoffmann H, Siebeek M, Lill H. Sensitive detection of the activation stale of blood coagulation in porcine DIC models by a new fibrin immunoassay. Blood Coagul Pibrinolysis 1993; 4: 103-106
- 34 Halvorsen S, Skjonsberg OH, Godal HC. Thrombin treated plasma employed as a standard for determination of soluble fibrin. Thromh Res 1993; 72: 305-313