Thromb Haemost 1997; 78(01): 672-677
DOI: 10.1055/s-0038-1657610
Angiogenesis
Schattauer GmbH Stuttgart

Angiogenesis: a Dynamic Balance of Stimulators and Inhibitors

Luisa M Iruela-Arispe
Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
,
Harold F Dvorak
Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2018 (online)

 
  • References

  • 1 Thomas KA, Gimenez-Gallego G. Fibroblast growth factors: broad spectrum mitogens with potent angiogenic activity. Trends Biochem Sci 1986; 11: 81-84
  • 2 Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987; 325: 257-259
  • 3 Yang EY, Moses HL. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 1990; 111: 731-741
  • 4 Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442-443
  • 5 Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851-858
  • 6 Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 43942
  • 7 Carmeliet P, Verreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435-439
  • 8 Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J Natl Cancer Inst 1979; 62: 1459-1472
  • 9 Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, micro-vascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029-1039
  • 10 Brown L, Detmar M, Claffey K, Nagy J, Feng D, Dvorak A, Dvorak H. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. In: Control of Angiogenesis. Goldberg I, Rosen E. eds. Birkhauser Verlag, Basel; Switzerland: 1996. pp 233-269
  • 11 Senger D, Van De WaterL, Brown L, Nagy J, Yeo K-T, Yeo T-K, Berse B, Jackman R, Dvorak A, Dvorak H. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993; 12: 303-324
  • 12 Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 1987; 57: 673-686
  • 13 Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67: 596-607
  • 14 Feng D, Nagy J, Hipp J, Dvorak H, Dvorak A. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine and serotonin. J Exp Med 1996; 183: 1981-1986
  • 15 Park J, Keller G-A, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the sub-epithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993; 4: 1317-1326
  • 16 Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986; 46: 5629-5632
  • 17 Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991; 88: 9267-9271
  • 18 Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Sakseia O, Kalkkinen N, Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBOJ 1996; 15: 290-298
  • 19 Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 07: 1471-1480
  • 20 Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and Tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA 1993; 90: 9355-9358
  • 21 Iwama A, Hamaguchi I, Hashiyama M, Murayama Y, Yasunaga K, Suda T. Molecular cloning and characterization of mouse Tie and Tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 1993; 195: 301-309
  • 22 Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895-898
  • 23 Sato TN, Tozawa Y, Deutsch U, Wolburg-Bucholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinase Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70-74
  • 24 Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J. The receptor tyrosine kinase Tie is required for integrity and survival of vascular endothelial cells. EMBOJ 1995; 14: 5884-5891
  • 25 Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoetin-1, a ligand for the Tie-2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161-1169
  • 26 Suri C, Jones P, Patan S, Bartunkova S, Maisonpierre PC, Davies S, Sato TN, Yancopoulos GD. Requisite role of angiopoetin-1, a ligand for the Tie-2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-1180
  • 27 Langer R, Brem H, Falterman K, Klein M, Folkman J. Isolation of a cartilage factor that inhibits tumor neovascularization. Science 1976; 193: 70-72
  • 28 Langer RS, Conn H, Vacanti J, Haudenschild C, Folkman J. Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc Natl Acad Sci USA 1980; 77: 4431-4435
  • 29 Takigawa M, Shirai E, Enomoto M, Pan HO, Suzuki F, Shiio T, Yugari Y. A factor in conditioned medium of rabbit costal chondrocytes inhibits the proliferation of cultured endothelial cells and angiogenesis induced by B16 melanoma: its relation with cartilage-derived anti-tumor factor (CATF). Biochem Int 1985; 14: 357-363
  • 30 Peterson HI. Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 1986; 6: 251-254
  • 31 Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307-312
  • 32 Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 1990; 348: 555-558
  • 33 O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-328
  • 34 O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277-285
  • 35 Fidler TJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994; 79: 185-188
  • 36 Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624-6628
  • 37 Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345-355
  • 38 Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts an antiangiogenic effect on tube formation by endothelial cells in vitro. Proc Natl Acad Sci USA 1991; 88: 5026-5030
  • 39 Iruela-Arispe ML, Porter P, Bornstein P, Sage EH. Thrombospondin-1, an inhibitor of angiogenesis, is regulated by progesterone in human stromal cells. J Clin Invest 1996; 97: 403-412
  • 40 Mosher DF. Physiology of thrombospondin. Annu Rev Med 1990; 41: 85-97
  • 41 Frazier WA. Thrombospondins. Curr Opin Cell Biol 1991; 3: 792-799
  • 42 Majack RA, Cook SC, Bornstein P. Control of smooth muscle cell gowth by components of the extracellular matrix: autocrine role for thrombospondin. Proc Natl Acad Sci USA 1986; 83: 9050-9054
  • 43 Bagavandoss P, Wilks JW. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun 1990; 170: 867-872
  • 44 Murphy-Ullrich JE, Höök M. Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol 1989; 109: 1309-1319
  • 45 Lawler J, Weinstein R, Hynes RO. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 1988; 107: 2351-2361
  • 46 Canfield AE, Boot-Handford RP, Schor AM. Thrombospondin gene expression by endothelial cells in culture is modulated by cell proliferation, cell shape and the substratum. Biochem J 1990; 268: 225-230
  • 47 Leung LLK, Li WX, McGregor JL, Albrecht G, Howard RJ. CD36 peptides enhance or inhibit CD36-thrombospondin binding. J Biol Chem 1992; 267: 18244-18250
  • 48 Yabkowitz R, Dixit VM. Human carcinoma cells bind thrombospondin through a Mr 80,000/105,000 receptor. Cancer Res 1991; 51: 3648-3656
  • 49 Asch AS, Barnwell J, Silverstein RL, Nachman RA. Isolation of the thrombospondin membrane receptor. J Clin Invest 1987; 79: 1054-1061
  • 50 Karczewski J, Knudsen KA, Smith L, Murphy A, Rothman VL, Tuszynski GP. The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa. J Biol Chem 1989; 264: 21322-21326
  • 51 Guo NH, Krutzsch HC, Negre E, Vogel T, Blake DA, Roberts DD. Heparin-binding and sulfide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci USA 1992; 89: 3040-3044
  • 52 Tolsma S, Volpert OV, Good DJ, Frazier WA, Polverini P, Bouck N. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 1993; 122: 497-511
  • 53 Bornstein P. The thrombospondins: structure and regulation of expression. FASEB J 1992; 6: 3290-3299
  • 54 Bornstein P, O’Rourke K, Wikstrom K, Wolf FW, Katz R, Li P, Dixit VM. A second expressed thrombospondin gene (Thbs2) exists in the mouse genome. J Biol Chem 1991; 266: 12821-12824
  • 55 LaBell TL, McGookey-Milewicz DJ, Disteche CM, Byers PH. Thrombospondin II: Partial cDNA sequence, chromosome location, and expression of a second member of the thrombospondin gene family in humans. Genomics 1992; 12: 421-429
  • 56 Vos HL, Devarayalu S, de Vries Y, Bornstein P. Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J Biol Chem 1992; 267: 12192-12196
  • 57 Bornstein P, Devarayalu S, Edelhoff S, Disteche CM. Isolation and characterization of the mouse thrombospondin 3 (Thbs3) gene. Genomics 1993; 15: 607-613
  • 58 Oldberg A, Antonsson P, Lindblom K, Heinegard D. COMP (cartilage oligomeric matrix protein) is structurally releated to the thrombospondins. J Biol Chem 1992; 267: 22346-22350
  • 59 Lawler J, Duquette M, Whittaker CA, Adams JC, McHenry K, DeSimone DW. Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family. J Cell Biol 1993; 120: 1059-1067
  • 60 Reed MJ, Iruela-Arispe ML, O’Brien ER, Truong T, LaBell T, Bornstein P, Sage EH. Expression of thrombospondins by endothelial cells: injury is correlated with TSP-1. Am J Pathol 1995; 147: 1068-1080