Semin Liver Dis 2018; 38(04): 299-307
DOI: 10.1055/s-0038-1667299
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

ABCB4 Gene Aberrations in Human Liver Disease: An Evolving Spectrum

Matthias Christian Reichert
1   Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
,
Frank Lammert
1   Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
24 October 2018 (online)

Abstract

ATP-binding cassette subfamily B member 4 (ABCB4) is a phospholipid translocator at the canalicular membrane of the hepatocyte, which “flops” phosphatidylcholine into bile. Dysfunction of this transporter due to ABCB4 gene variants can cause liver diseases and has been called ABCB4 deficiency. Several diseases including progressive familial intrahepatic cholestasis type 3 (PFIC3), low phospholipid-associated cholelithiasis (LPAC), a subgroup of patients developing intrahepatic cholestasis of pregnancy (ICP), drug-induced liver injury and chronic cholangiopathy with biliary fibrosis and cirrhosis were attributed to ABCB4 deficiency and characterized in the past decade. LPAC and ICP are usually caused by monoallelic variants, whereas patients affected by PFIC3 are homozygous or compound heterozygous carriers of ABCB4 variants. Treatment with ursodeoxycholic acid is often effective, but as the more severe forms of ABCB4 deficiency progress, nevertheless, new diagnostic and therapeutic approaches are warranted. Current functional classifications for ABCB4 deficiency–associated mutations can guide the development of novel genotype–based targeted pharmacotherapies for these conditions. Recently, increasing evidence from genome-wide association studies is emerging on associations of ABCB4 variants with hepatobiliary malignancies.

Financial Support

None.


 
  • References

  • 1 Gudbjartsson DF, Helgason H, Gudjonsson SA. , et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 2015; 47 (05) 435-444
  • 2 Lincke CR, Smit JJ, van der Velde-Koerts T, Borst P. Structure of the human MDR3 gene and physical mapping of the human MDR locus. J Biol Chem 1991; 266 (08) 5303-5310
  • 3 Huang L, Zhao A, Lew JL. , et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003; 278 (51) 51085-51090
  • 4 Ghonem NS, Ananthanarayanan M, Soroka CJ, Boyer JL. Peroxisome proliferator-activated receptor α activates human multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 transcription and increases rat biliary phosphatidylcholine secretion. Hepatology 2014; 59 (03) 1030-1042
  • 5 Hochrath K, Krawczyk M, Goebel R. , et al. The hepatic phosphatidylcholine transporter ABCB4 as modulator of glucose homeostasis. FASEB J 2012; 26 (12) 5081-5091
  • 6 Lammert F, Wang DQ, Hillebrandt S. , et al. Spontaneous cholecysto- and hepatolithiasis in Mdr2 −/− mice: a model for low phospholipid-associated cholelithiasis. Hepatology 2004; 39 (01) 117-128
  • 7 Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 2007; 27 (01) 77-98
  • 8 Dawson PA. Toxic bile and sclerosing cholangitis: is there a role for pharmacological interruption of the bile acid enterohepatic circulation?. Hepatology 2016; 63 (02) 363-364
  • 9 Oude Elferink RP, Groen AK. Mechanisms of biliary lipid secretion and their role in lipid homeostasis. Semin Liver Dis 2000; 20 (03) 293-305
  • 10 Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis 2010; 30 (02) 134-146
  • 11 Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin Liver Dis 2011; 31 (01) 3-10
  • 12 Delaunay JL, Durand-Schneider AM, Dossier C. , et al. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology 2016; 63 (05) 1620-1631
  • 13 Allen AM, Kim WR, Larson JJ. , et al. The epidemiology of liver diseases unique to pregnancy in a US community: a population-based study. Clin Gastroenterol Hepatol 2016; 14 (02) 287-94.e1 , 2
  • 14 Glantz A, Marschall HU, Mattsson LA. Intrahepatic cholestasis of pregnancy: relationships between bile acid levels and fetal complication rates. Hepatology 2004; 40 (02) 467-474
  • 15 Gurung V, Middleton P, Milan SJ, Hague W, Thornton JG. Interventions for treating cholestasis in pregnancy. Cochrane Database Syst Rev 2013; (06) CD000493
  • 16 Chappell LC, Gurung V, Seed PT, Chambers J, Williamson C, Thornton JG. ; PITCH Study Consortium. Ursodeoxycholic acid versus placebo, and early term delivery versus expectant management, in women with intrahepatic cholestasis of pregnancy: semifactorial randomised clinical trial. BMJ 2012; 344: e3799
  • 17 Bacq Y, le Besco M, Lecuyer AI. , et al. Ursodeoxycholic acid therapy in intrahepatic cholestasis of pregnancy: Results in real-world conditions and factors predictive of response to treatment. Dig Liver Dis 2017; 49 (01) 63-69
  • 18 Bacq Y, Sentilhes L, Reyes HB. , et al. Efficacy of ursodeoxycholic acid in treating intrahepatic cholestasis of pregnancy: a meta-analysis. Gastroenterology 2012; 143 (06) 1492-1501
  • 19 Wikström Shemer E, Marschall HU, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. BJOG 2013; 120 (06) 717-723
  • 20 Wikström Shemer EA, Stephansson O, Thuresson M, Thorsell M, Ludvigsson JF, Marschall HU. Intrahepatic cholestasis of pregnancy and cancer, immune-mediated and cardiovascular diseases: a population-based cohort study. J Hepatol 2015; 63 (02) 456-461
  • 21 Jacquemin E, Cresteil D, Manouvrier S, Boute O, Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet 1999; 353 (9148): 210-211
  • 22 Dixon PH, Weerasekera N, Linton KJ. , et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet 2000; 9 (08) 1209-1217
  • 23 Müllenbach R, Linton KJ, Wiltshire S. , et al. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy. J Med Genet 2003; 40 (05) e70
  • 24 Floreani A, Carderi I, Paternoster D. , et al. Intrahepatic cholestasis of pregnancy: three novel MDR3 gene mutations. Aliment Pharmacol Ther 2006; 23 (11) 1649-1653
  • 25 Floreani A, Carderi I, Paternoster D. , et al. Hepatobiliary phospholipid transporter ABCB4, MDR3 gene variants in a large cohort of Italian women with intrahepatic cholestasis of pregnancy. Dig Liver Dis 2008; 40 (05) 366-370
  • 26 Bacq Y, Gendrot C, Perrotin F. , et al. ABCB4 gene mutations and single-nucleotide polymorphisms in women with intrahepatic cholestasis of pregnancy. J Med Genet 2009; 46 (10) 711-715
  • 27 Degiorgio D, Crosignani A, Colombo C. , et al. ABCB4 mutations in adult patients with cholestatic liver disease: impact and phenotypic expression. J Gastroenterol 2016; 51 (03) 271-280
  • 28 Wasmuth HE, Glantz A, Keppeler H. , et al. Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene. Gut 2007; 56 (02) 265-270
  • 29 Lammert F, Liebe R, Arrese M. Intrahepatic cholestasis of pregnancy: proposal for an updated classification based in genetics. In: Häussinger D, Beuers U, Trauner M. , eds. Hepatic and extrahepatic targets of bile acid signaling. XXII International Bile Acid Meeting Vienna 2012. Basel, Switzerland: Karger; 2013: 83-87
  • 30 Dixon PH, Wadsworth CA, Chambers J. , et al. A comprehensive analysis of common genetic variation around six candidate loci for intrahepatic cholestasis of pregnancy. Am J Gastroenterol 2014; 109 (01) 76-84
  • 31 Rosmorduc O, Hermelin B, Boelle PY, Parc R, Taboury J, Poupon R. ABCB4 gene mutation-associated cholelithiasis in adults. Gastroenterology 2003; 125 (02) 452-459
  • 32 Shoda J, Oda K, Suzuki H. , et al. Etiologic significance of defects in cholesterol, phospholipid, and bile acid metabolism in the liver of patients with intrahepatic calculi. Hepatology 2001; 33 (05) 1194-1205
  • 33 Benzimra J, Derhy S, Rosmorduc O, Menu Y, Poupon R, Arrivé L. Hepatobiliary anomalies associated with ABCB4/MDR3 deficiency in adults: a pictorial essay. Insights Imaging 2013; 4 (03) 331-338
  • 34 Wendum D, Barbu V, Rosmorduc O, Arrivé L, Fléjou JF, Poupon R. Aspects of liver pathology in adult patients with MDR3/ABCB4 gene mutations. Virchows Arch 2012; 460 (03) 291-298
  • 35 Poupon R, Arrive L, Rosmorduc O. The cholangiographic features of severe forms of ABCB4/MDR3 deficiency-associated cholangiopathy in adults. Gastroenterol Clin Biol 2010; 34 (6-7): 380-387
  • 36 Condat B, Zanditenas D, Barbu V. , et al. Prevalence of low phospholipid-associated cholelithiasis in young female patients. Dig Liver Dis 2013; 45 (11) 915-919
  • 37 Rosmorduc O, Poupon R. Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene. Orphanet J Rare Dis 2007; 2: 29
  • 38 Erlinger S. Low phospholipid-associated cholestasis and cholelithiasis. Clin Res Hepatol Gastroenterol 2012; 36 (Suppl. 01) S36-S40
  • 39 Pasmant E, Goussard P, Baranes L. , et al. First description of ABCB4 gene deletions in familial low phospholipid-associated cholelithiasis and oral contraceptives-induced cholestasis. Eur J Hum Genet 2012; 20 (03) 277-282
  • 40 Poupon R, Rosmorduc O, Boëlle PY. , et al. Genotype-phenotype relationships in the low-phospholipid-associated cholelithiasis syndrome: a study of 156 consecutive patients. Hepatology 2013; 58 (03) 1105-1110
  • 41 Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 2001; 120 (06) 1459-1467
  • 42 Lammert F, Acalovschi M, Ercolani G. , et al; European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol 2016; 65 (01) 146-181
  • 43 Schatz SB, Jüngst C, Keitel-Anselmo V. , et al. Phenotypic spectrum and diagnostic pitfalls of ABCB4 deficiency depending on age of onset. Hepatol Commun 2018; 2 (05) 504-514
  • 44 Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 2009; 4: 1
  • 45 Klomp LW, Vargas JC, van Mil SW. , et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 2004; 40 (01) 27-38
  • 46 Pawlikowska L, Strautnieks S, Jankowska I. , et al. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol 2010; 53 (01) 170-178
  • 47 Sambrotta M, Strautnieks S, Papouli E. , et al; University of Washington Center for Mendelian Genomics. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet 2014; 46 (04) 326-328
  • 48 Gomez-Ospina N, Potter CJ, Xiao R. , et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun 2016; 7: 10713
  • 49 Gonzales E, Taylor SA, Davit-Spraul A. , et al. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology 2017; 65 (01) 164-173
  • 50 Dröge C, Bonus M, Baumann U. , et al. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol 2017; 67 (06) 1253-1264
  • 51 Jacquemin E, De Vree JM, Cresteil D. , et al. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 2001; 120 (06) 1448-1458
  • 52 Gordo-Gilart R, Andueza S, Hierro L. , et al. Functional analysis of ABCB4 mutations relates clinical outcomes of progressive familial intrahepatic cholestasis type 3 to the degree of MDR3 floppase activity. Gut 2015; 64 (01) 147-155
  • 53 Frider B, Castillo A, Gordo-Gilart R. , et al. Reversal of advanced fibrosis after long-term ursodeoxycholic acid therapy in a patient with residual expression of MDR3. Ann Hepatol 2015; 14 (05) 745-751
  • 54 Poupon R, Barbu V, Chamouard P, Wendum D, Rosmorduc O, Housset C. Combined features of low phospholipid-associated cholelithiasis and progressive familial intrahepatic cholestasis 3. Liver Int 2010; 30 (02) 327-331
  • 55 Ziol M, Barbu V, Rosmorduc O. , et al. ABCB4 heterozygous gene mutations associated with fibrosing cholestatic liver disease in adults. Gastroenterology 2008; 135 (01) 131-141
  • 56 Colombo C, Vajro P, Degiorgio D. , et al; SIGENP Study Group for Genetic Cholestasis. Clinical features and genotype-phenotype correlations in children with progressive familial intrahepatic cholestasis type 3 related to ABCB4 mutations. J Pediatr Gastroenterol Nutr 2011; 52 (01) 73-83
  • 57 Gordo-Gilart R, Hierro L, Andueza S. , et al. Heterozygous ABCB4 mutations in children with cholestatic liver disease. Liver Int 2016; 36 (02) 258-267
  • 58 Krawczyk M, Rau M, Grünhage F. , et al; NAFLD Clinical Study Group (NAFLD CSG). The ABCB4 p.T175A variant as potential modulator of hepatic fibrosis in patients with chronic liver diseases: looking beyond the cholestatic realm. Hepatology 2017; 66 (02) 666-667
  • 59 Benichou C, Danan G, Flahault A. Causality assessment of adverse reactions to drugs -- II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 1993; 46 (11) 1331-1336
  • 60 Smith AJ, van Helvoort A, van Meer G. , et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 2000; 275 (31) 23530-23539
  • 61 Holzbach RT, Sivak DA, Braun WE. Familial recurrent intrahepatic cholestasis of pregnancy: a genetic study providing evidence for transmission of a sex-limited, dominant trait. Gastroenterology 1983; 85 (01) 175-179
  • 62 Ganne-Carrié N, Baussan C, Grando V, Gaudelus J, Cresteil D, Jacquemin E. Progressive familial intrahepatic cholestasis type 3 revealed by oral contraceptive pills. J Hepatol 2003; 38 (05) 693-694
  • 63 Lang C, Meier Y, Stieger B. , et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007; 17 (01) 47-60
  • 64 Jirsa M, Bronský J, Dvořáková L. , et al. ABCB4 mutations underlie hormonal cholestasis but not pediatric idiopathic gallstones. World J Gastroenterol 2014; 20 (19) 5867-5874
  • 65 Mhatre S, Wang Z, Nagrani R. , et al. Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study. Lancet Oncol 2017; 18 (04) 535-544
  • 66 Tougeron D, Fotsing G, Barbu V, Beauchant M. ABCB4/MDR3 gene mutations and cholangiocarcinomas. J Hepatol 2012; 57 (02) 467-468
  • 67 Kiehl S, Herkt SC, Richter AM. , et al. ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth. Sci Rep 2014; 4: 6899
  • 68 Pikarsky E, Porat RM, Stein I. , et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431 (7007): 461-466
  • 69 Barash H, , R Gross E, Edrei Y. , et al. Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc Natl Acad Sci U S A 2010; 107 (05) 2207-2212
  • 70 Iannelli F, Collino A, Sinha S. , et al. Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency. Nat Commun 2014; 5: 3850
  • 71 Smit JJ, Schinkel AH, Oude Elferink RP. , et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993; 75 (03) 451-462
  • 72 Katzenellenbogen M, Mizrahi L, Pappo O. , et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 2007; 5 (11) 1159-1170
  • 73 Poupon R. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin Res Hepatol Gastroenterol 2012; 36 (Suppl. 01) S3-S12
  • 74 Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 2007; 45 (06) 1506-1516
  • 75 Gordo-Gilart R, Andueza S, Hierro L, Jara P, Alvarez L. Functional rescue of trafficking-impaired ABCB4 mutants by chemical chaperones. PLoS One 2016; 11 (02) e0150098
  • 76 Gonzales E, Grosse B, Cassio D, Davit-Spraul A, Fabre M, Jacquemin E. Successful mutation-specific chaperone therapy with 4-phenylbutyrate in a child with progressive familial intrahepatic cholestasis type 2. J Hepatol 2012; 57 (03) 695-698
  • 77 Naoi S, Hayashi H, Inoue T. , et al. Improved liver function and relieved pruritus after 4-phenylbutyrate therapy in a patient with progressive familial intrahepatic cholestasis type 2. J Pediatr 2014; 164 (05) 1219-1227.e3
  • 78 Gonzales E, Grosse B, Schuller B. , et al. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 2015; 62 (02) 558-566
  • 79 Shneider BL, Morris A, Vockley J. Possible phenylacetate hepatotoxicity during 4-phenylbutyrate therapy of byler disease. J Pediatr Gastroenterol Nutr 2016; 62 (03) 424-428
  • 80 Gautherot J, Durand-Schneider AM, Delautier D. , et al. Effects of cellular, chemical, and pharmacological chaperones on the rescue of a trafficking-defective mutant of the ATP-binding cassette transporter proteins ABCB1/ABCB4. J Biol Chem 2012; 287 (07) 5070-5078
  • 81 Andress EJ, Nicolaou M, Romero MR. , et al. Molecular mechanistic explanation for the spectrum of cholestatic disease caused by the S320F variant of ABCB4. Hepatology 2014; 59 (05) 1921-1931
  • 82 Delaunay JL, Bruneau A, Hoffmann B. , et al. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770). Hepatology 2017; 65 (02) 560-570
  • 83 Tabibian JH, O'Hara SP, Trussoni CE. , et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016; 63 (01) 185-196
  • 84 Cariello M, Peres C, Zerlotin R. , et al. Long-term administration of nuclear bile acid receptor FXR agonist prevents spontaneous hepatocarcinogenesis in Abcb4-/- mice. Sci Rep 2017; 7 (01) 11203
  • 85 Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 2016; 63 (03) 914-929
  • 86 Baghdasaryan A, Fuchs CD, Österreicher CH. , et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J Hepatol 2016; 64 (03) 674-681
  • 87 Miethke AG, Zhang W, Simmons J. , et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 2016; 63 (02) 512-523
  • 88 Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 2017; 136: 1-11
  • 89 Clarysse S, Tack J, Lammert F, Duchateau G, Reppas C, Augustijns P. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci 2009; 98 (03) 1177-1192