Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(21): 4023-4033
DOI: 10.1055/s-0039-1690024
DOI: 10.1055/s-0039-1690024
paper
An Expedient, Direct, Three-Component Approach for the Synthesis of 4-Thioarylpyrroles
We thank the Department of Science and Technology (DST), New Delhi, India for the financial support for this work under a DST-INSPIRE faculty scheme (DST/INSPIRE/04/2016/000295).Further Information
Publication History
Received: 24 June 2019
Accepted after revision: 20 July 2019
Publication Date:
15 August 2019 (online)
Abstract
A three-component strategy for the synthesis of 4-thioarylpyrroles from 1,4-enediones, thiols, and ammonium formate in one-pot has been developed. The reaction proceeds through the sequential thiol-Michael/Paal–Knorr reaction of 1,4-enediones with the formation of one new C–S and two C–N bonds. The operationally simple protocol provides direct access to the highly functionalized 4-thioarylpyrroles with free-NH in good to excellent yields. The synthetic application of resulting 4-thioarylpyrroles was demonstrated by oxidation of the sulfur atom to the corresponding sulfoxide and sulfone.
Key words
metal-free synthesis - 1,4-enediones - 4-thioarylpyrroles - thiol-Michael reaction - C–S bond formationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690159.
- Supporting Information
-
References
- 1a Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 1b Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 1c Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
- 1d Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 2a Biava M, Porretta GC, Deidda D, Pompei R, Tafic A, Manettic F. Bioorg. Med. Chem. 2004; 12: 1453
- 2b Teixeira C, Barbault F, Rebehmed J, Liu K, Xie L, Lu H, Jiang S, Fan B, Maurel F. Bioorg. Med. Chem. 2008; 16: 3039
- 2c Hughes CC, Prieto-Davo A, Jensen PR, Fenical W. Org. Lett. 2008; 10: 629
- 2d Sun X, Qiu J, Strong SA, Green LS, Wasley JW. F, Blonder JP, Colagiovanni DB, Mutka SC, Stout AM, Richards JP, Rosenthal GJ. Bioorg. Med. Chem. Lett. 2011; 21: 5849
- 2e Yang T, Ng WH, Chen H, Chomchopbun K, Huynh TH, Go ML, Kon OL. ACS Med. Chem. Lett. 2016; 7: 807
- 2f Ching KC, Kam YW, Merits A, Ng LF, Chai CL. J. Med. Chem. 2015; 58: 9196
- 3a Zhu Y, Xu L, Zhang J, Hu X, Liu Y, Yin H, Lv T, Zhang H, Liu L, An H, Liu H, Xu J, Lin Z. Cancer Sci. 2013; 104: 1052
- 3b Sartori A, Portioli E, Battistini L, Calorini L, Pupi A, Vacondio F, Arosio D, Bianchini F, Zanardi F. J. Med. Chem. 2017; 60: 248
- 4a McCrindle BW, Ose L, Marais AD. J. Pediatr. 2003; 143: 74
- 4b Chen X, Xiong F, Chen W, He Q, Chen F. J. Org. Chem. 2014; 79: 2723
- 4c Dias LC, Vieira AS, Barreiro EJ. Org. Biomol. Chem. 2016; 14: 2291
- 4d Estévez V, Villacampa M, Menéndez JC. Org. Chem. Front. 2014; 1: 458
- 4e Park WK. C, Kennedy RM, Larsen SD, Miller S, Roth BD, Song Y, Steinbaugh BA, Sun K, Tait BD, Kowala MC, Trivedi BK, Auerbach B, Askew V, Dillon L, Hanselman JC, Lin Z, Lu GH, Robertson A, Sekerke C. Bioorg. Med. Chem. Lett. 2008; 18: 1151
- 5a Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
- 5b Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 1635
- 5c Paal C. Ber. Dtsch. Chem. Ges. 1885; 18: 367
- 6a Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 6b Zhou C, Ma D. Chem. Commun. 2014; 50: 3085
- 6c Trost BM, Lumb J.-P, Azzarelli JM. J. Am. Chem. Soc. 2011; 133: 740
- 6d Borra S, Chandrasekhar D, Newar UD, Maurya RA. J. Org. Chem. 2019; 84: 1042
- 6e Zhang M, Fang X, Neumann H, Beller M. J. Am. Chem. Soc. 2013; 135: 11384
- 6f Jiang Y, Chan WC, Park C.-M. J. Am. Chem. Soc. 2012; 134: 4104
- 6g Daw P, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2018; 140: 11931
- 6h Li B, Wang N, Liang Y, Xu S, Wang B. Org. Lett. 2013; 15: 136
- 6i Wang L, Ackermann L. Org. Lett. 2013; 15: 176
- 6j Michlik S, Kempe R. Nat. Chem. 2013; 5: 141
- 6k Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 7a Estevez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 7b Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 7c Dhinakaran I, Padmini V, Bhuvanesh N. ACS Comb. Sci. 2016; 18: 236
- 7d Xu H, Liu H.-W, Chen K, Wang G.-W. J. Org. Chem. 2018; 83: 6035
- 7e Balme G. Angew. Chem. Int. Ed. 2004; 43: 6238
- 7f Hong D, Zhu Y.-X, Li Y, Lin X.-F, Lu P, Wang Y.-G. Org. Lett. 2011; 13: 4668
- 7g Wu XD, Li K, Wang SS, Liu C, Lei AW. Org. Lett. 2016; 18: 56
- 7h Fleige M, Glorius F. Chem. Eur. J. 2017; 23: 10773
- 8a Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1999; 121: 54
- 8b Kamijo S, Kanazawa C, Yamamoto Y. Tetrahedron Lett. 2005; 46: 2563
- 8c Cyr DJ. St, Arndtsen BA. J. Am. Chem. Soc. 2007; 129: 12366
- 8d Morin MS. T, Cyr DJ. St, Arndtsen BA. Org. Lett. 2010; 12: 4916
- 8e Lourdusamy E, Yao L, Park C.-M. Angew. Chem. Int. Ed. 2010; 49: 7963
- 9a Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 9b Takeda Y, Kajihara R, Kobayashi N, Noguchi K, Saito A. Org. Lett. 2017; 19: 6744
- 9c Tang S, Liu K, Long Y, Gao X, Gao M, Lei A. Org. Lett. 2015; 17: 2404
- 9d Gao Q, Liu Z, Wang Y, Wu X, Zhang J, Wu A. Adv. Synth. Catal. 2018; 360: 1364
- 10a Jalani HB, Mali JR, Park H, Lee JK, Lee K, Lee K, Choi Y. Adv. Synth. Catal. 2018; 360: 4073
- 10b Reddy NN. K, Rawat D, Adimurthy S. J. Org. Chem. 2018; 83: 9412
- 10c Wang Y, Jiang C.-M, Li H.-L, He F.-S, Luo X, Deng W.-P. J. Org. Chem. 2016; 81: 8653
- 10d Wu X, Zhao P, Geng X, Wang C, Wu YD, Wu AX. Org. Lett. 2018; 20: 688
- 11a Prabagar B, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew. Chem. Int. Ed. 2019; 58: 2365
- 11b Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew. Chem. Int. Ed. 2019; 58: 2289
- 11c Yin G, Wang Z, Chen A, Gao M, Wu A, Pan Y. J. Org. Chem. 2008; 73: 3377
- 12a Shibuya K, Kawamine K, Ozaki C, Ohgiya T, Edano T, Yoshinaka Y, Tsunenari Y. J. Med. Chem. 2018; 61: 10635
- 12b Mahadevegowda SH, Hou S, Ma J, Keogh D, Zhang J, Mallick A, Liu X.-W, Duan H, Chan-Park MB. Biomater. Sci. 2018; 6: 1339
- 12c Jackson PA, Widen JC, Harki DA, Brummond KM. J. Med. Chem. 2017; 60: 839
- 12d Rajeshkumar V, Neelamegam C, Anandan S. Org. Biomol. Chem. 2019; 17: 982
- 12e Kalia D, Pawar SP, Thopate JS. Angew. Chem. Int. Ed. 2017; 56: 1885
- 13a Gensch T, Klauck FJ. R, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
- 13b Vasquez-Cespedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
- 13c Song Z, Antonchick AP. Org. Biomol. Chem. 2016; 14: 4804
- 13d Mandal A, Sahoo H, Baidya M. Org. Lett. 2016; 18: 3202
- 13e Meller T, Ackermann L. Chem. Eur. J. 2016; 22: 14151
- 14a Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
- 14b Kang X, Yan R, Yu G, Pang X, Liu X, Li X, Xiang L, Huang G. J. Org. Chem. 2014; 79: 10605
- 14c Zhao W, Xie P, Bian Z, Zhou A, Ge H, Zhang M, Ding Y, Zheng L. J. Org. Chem. 2015; 80: 9167
- 14d Sun J, Qiu J.-K, Zhu Y.-L, Guo C, Hao W.-J, Jiang B, Tu S.-J. J. Org. Chem. 2015; 80: 8217
- 14e Zhao X, Zhang L, Lu X, Li T, Lu K. J. Org. Chem. 2015; 80: 2918
- 15 CCDC 1895966 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 16a Herrera A, Alvarez RM, Ramiro P, Molero D, Almy J. J. Org. Chem. 2006; 71: 3026
- 16b Griffin RJ, Henderson A, Curtin NJ, Echalier A, Endicott JA, Hardcastle IR, Newell DR, Noble ME. M, Wang LZ, Golding BT. J. Am. Chem. Soc. 2006; 128: 6012
- 17 The intermediate compound 6 was completely characterized by 1H and 13C NMR spectroscopy and HRMS. For details, see the Supporting Information.