Subscribe to RSS
DOI: 10.1055/s-0039-1690613
Practical Application of the Aqueous ‘Sulfonyl-Azide-Free’ (SAFE) Diazo Transfer Protocol to Less α-C–H Acidic Ketones and Esters
This research was supported by the Russian Science Foundation (project grant 19-75-30008).Publication History
Received: 29 June 2017
Accepted after revision: 31.072019
Publication Date:
28 August 2019 (online)
Abstract
The earlier described ‘sulfonyl-azide-free’ (‘SAFE’) protocol for diazo transfer to CH-acidic 1,3-dicarbonyl compounds (and their similarly activated congeners) has been extended to the less reactive monocarbonyl substrates, which previously required a separate activation step. Formylation in situ, followed by the addition of an optimized amount of the ‘SAFE cocktail’ (obtained by mixing sodium azide, potassium carbonate, and m-carboxybenzenesulfonyl chloride in water) led to the formation of the desired diazo compounds, which were isolated by extraction in moderate to excellent yields, and, in most cases, with no need for additional purification.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690613. Copies of 1H and 13C NMR spectra are provided.
- Supporting Information
-
References
- 1a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 1b Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . John Wiley & Sons, Inc; New York: 1998
- 2 Regitz M. Justus Liebigs Ann. Chem. 1964; 676: 101
- 3 Bollinger FW, Tuma LD. Synlett 1996; 407
- 4 Curphey TJ. Org. Prep. Proced. Int. 1981; 13: 112
- 5 Dar’in D, Kantin G, Krasavin M. Chem. Commun. 2019; 55: 5239
- 6 Clapham B. Curr. Opin. Drug Discovery Dev. 2004; 7: 813
- 7 Regitz M, Rueter J. Chem. Ber. 1968; 101: 1263
- 8a Korneev S, Richter C. Synthesis 1995; 1248
- 8b Abid I, Gosselin P, Mathe-Allainmat M, Abid S, Dujardin G, Gaulon-Nourry C. J. Org. Chem. 2015; 80: 9980
- 9 Heydt H. Sci. Synth. 2004; 27: 843
- 10 Shu W.-M, Ma J.-R, Zheng K.-L, Sun H.-Y, Wang M, Yang Y, Wu A.-X. Tetrahedron 2014; 70: 9321
- 11 Danheiser RL, Miller RF, Brisbois RG, Park SZ. J. Org. Chem. 1990; 55: 1959
- 12 Martin LJ, Marzinzik AL, Ley SV, Baxendale IR. Org. Lett. 2011; 13: 320
- 13 Davies HM. L, Chennamadhavuni S, Bakin A. US Pat. Appl. 20140249199, 2014 ; Chem. Abstr. 2016, 167, 175774.
- 14 Pfeiffer P, Enders E. Chem. Ber. 1951; 84: 247
- 15 Preobrazhenskii NA, Beer AA. Zh. Obshch. Khim. 1945; 15: 667
- 16 Sezer O, Dabak K, Anac O, Akar A. Helv. Chim. Acta 1996; 80: 960
- 17 Nikolaev VA, Utkin PY, Korobitsyna IK. Zh. Org. Khim. 1989; 25: 1176
- 18 Nicolle SM, Moody CJ. Chem. Eur. J. 2014; 20: 4420
- 19 Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
- 20 Hahn ND, Nieger M, Doetz KH. J. Organomet. Chem. 2004; 689: 2662
- 21 Duerr H, Hauck G, Brueck W, Kober H. Z. Naturforsch., B 1981; 36: 1149
- 22 Keipour H, Jalba A, Delage-Laurin L, Ollevier T. J. Org. Chem. 2017; 82: 3000
- 23 Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496
- 24 Huang L, Wulff WD. J. Am. Chem. Soc. 2011; 133: 8892
- 25 Matheis C, Krause T, Bragoni V, Goossen LJ. Chem. Eur. J. 2016; 22: 12270
- 26 Chiles HM, Noyes WA. J. Am. Chem. Soc. 1922; 44: 1798