Synthesis 2019; 51(24): 4531-4548
DOI: 10.1055/s-0039-1690674
short review
© Georg Thieme Verlag Stuttgart · New York

Advances in C(sp3)–H Bond Functionalization via Radical Processes

Tong Zhang ‡
a   Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Yue-Hua Wu ‡
a   Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Nai-Xing Wang
a   Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. of China   Email: nxwang@mail.ipc.ac.cn
,
Yalan Xing
b   Department of Chemistry, William Paterson University of New Jers, New Jersey, 07470, USA   Email: xingy@wpunj.edu
› Author Affiliations
Support for this research was provided by the National Natural Science Foundation of China (21572240).
Further Information

Publication History

Received: 03 January 2019

Accepted after revision: 20 August 2019

Publication Date:
13 September 2019 (online)


‡ These authors contributed equally to this review.

Abstract

C(sp3)–H Bonds are the most common structures in organic molecules. In recent years, the direct functionalization of C(sp3)–H bonds has attracted wide attention and made significant progress. This review mainly focuses on C(sp3)–H bond functionalization of alkanes with or without functional groups via radical processes reported since 2017. In particular, three methods of generating free radicals are discussed: the use of a radical initiator such as TBHP or DTBP; photocatalysis, and via 1,5-hydrogen atom transfer (1,5-HAT).

1 Introduction

2 C(sp3)–H Bond Functionalization of Alkanes

3 C(sp3)–H Bond Functionalization of Alkanes with a Functional Group

4 Conclusions