Subscribe to RSS
DOI: 10.1055/s-0039-1690674
Advances in C(sp3)–H Bond Functionalization via Radical Processes
Support for this research was provided by the National Natural Science Foundation of China (21572240).Publication History
Received: 03 January 2019
Accepted after revision: 20 August 2019
Publication Date:
13 September 2019 (online)
‡ These authors contributed equally to this review.
Abstract
C(sp3)–H Bonds are the most common structures in organic molecules. In recent years, the direct functionalization of C(sp3)–H bonds has attracted wide attention and made significant progress. This review mainly focuses on C(sp3)–H bond functionalization of alkanes with or without functional groups via radical processes reported since 2017. In particular, three methods of generating free radicals are discussed: the use of a radical initiator such as TBHP or DTBP; photocatalysis, and via 1,5-hydrogen atom transfer (1,5-HAT).
1 Introduction
2 C(sp3)–H Bond Functionalization of Alkanes
3 C(sp3)–H Bond Functionalization of Alkanes with a Functional Group
4 Conclusions
-
References
- 1 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
- 2a Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 2b Guo XX, Gu DW, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
- 2c He J, Wasa M, Chan KS. L, Shao Q, Yu JQ. Chem. Rev. 2017; 117: 8754
- 3a Moisés G, Luis MJ. Angew. Chem. Int. Ed. 2016; 55: 11000
- 3b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 4a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 4b Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
- 4c Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 4d Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
- 4e Chen X, Engle KM, Wang DH, Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
- 4f Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 4g Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 5 Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
- 6 Zhou W, Qian P, Zhao J, Fang H, Han J, Pan Y. Org. Lett. 2015; 17: 1160
- 7 Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
- 8 Li Z, Li C.-J. J. Am. Chem. Soc. 2006; 128: 56
- 9a Biafora A, Khan BA, Bahri J, Hewer JM, Goossen LJ. Org. Lett. 2017; 19: 1232
- 9b Dana S, Mandal A, Sahoo H, Mallik S, Grandhi GS, Baidya M. Org. Lett. 2018; 20: 716
- 9c Shi H, Herron AN, Shao Y, Shao Q, Yu J.-Q. Nature 2018; 558: 581
- 9d Shi R, Liao F, Niu H, Lei A. Org. Chem. Front. 2018; 5: 1957
- 9e Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
- 9f Wu Y, Li W, Jiang L, Zhang L, Lan J, You J. Chem. Sci. 2018; 9: 6878
- 9g Xie H, Ye Z, Ke Z, Lan J, Jiang H, Zeng W. Chem. Sci. 2018; 9: 985
- 9h Xu L.-L, Wang X, Ma B, Yin M.-X, Lin H.-X, Dai H.-X, Yu J.-Q. Chem. Sci. 2018; 9: 5160
- 10a Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 10b Mahatthananchai J, Dumas AM, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
- 10c Sheldon RA. J. Mol. Catal. A: Chem. 1996; 107: 75
- 11 Xue XS, Ji P, Zhou B, Cheng JP. Chem. Rev. 2017; 117: 8622
- 12 Zhu Y, Wei Y. Chem. Sci. 2014; 5: 2379
- 13 Deng G, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278
- 14 Li Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 13288
- 15 Zhang Z, Stateman LM, Nagib DA. Chem. Sci. 2019; 10: 1207
- 16 Wan M, Lou H, Liu L. Chem. Commun. 2015; 51: 13953
- 17 Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
- 18 Liang XA, Niu L, Wang S, Liu J, Lei A. Org. Lett. 2019; 21: 2441
- 19 Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640
- 20 Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik MH, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
- 21 Li GX, Hu X, He G, Chen G. Chem. Sci. 2019; 10: 688
- 22 Tran BL, Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
- 23 Zeng H.-T, Huang J.-M. Org. Lett. 2015; 17: 4276
- 24 Wang C.-Y, Song R.-J, Wei W.-T, Fan J.-H, Li J.-H. Chem. Commun. 2015; 51: 2361
- 25 Hu A, Guo JJ, Pan H, Zuo Z. Science 2018; 361: 668
- 26 Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
- 27 Zhang Q, Chang X, Peng L, Guo C. Angew. Chem. Int. Ed. 2019; 58: 6999
- 28 Liu H, Ma L, Zhou R, Chen X, Fang W, Wu J. ACS Catal. 2018; 8: 6224
- 29 Li ZL, Sun KK, Wu PY, Cai C. J. Org. Chem. 2019; 84: 6830
- 30 Liang D, Huo B, Dong Y, Wang Y, Dong Y, Wang B, Ma Y. Chem. Asian J. 2019; 14: 1932
- 31 Margrey KA, Czaplyski WL, Nicewicz DA, Alexanian EJ. J. Am. Chem. Soc. 2018; 140: 4213
- 32 Bao X, Wang Q, Zhu J. Nat. Commun. 2019; 10: 769
- 33 Xia Y, Wang L, Studer A. Angew. Chem. Int. Ed. 2018; 57: 12940
- 34 Tang S, Liu Y, Gao X, Wang P, Huang P, Lei A. J. Am. Chem. Soc. 2018; 140: 6006
- 35 Lennartson A, Christensen LU, McKenzie CJ, Nielsen UG. Inorg. Chem. 2014; 53: 399
- 36 Guan H, Sun S, Mao Y, Chen L, Lu R, Huang J, Liu L. Angew. Chem. Int. Ed. 2018; 57: 11413
- 37 Liu Z, Xiao H, Zhang B, Shen H, Zhu L, Li C. Angew. Chem. Int. Ed. 2019; 58: 2510
- 38 Wu K, Wang L, Colon-Rodriguez S, Flechsig GU, Wang T. Angew. Chem. Int. Ed. 2019; 58: 1774
- 39 Xu B, Tambar UK. ACS Catal. 2019; 9: 4627
- 40 Yin Z, Zhang Z, Zhang Y, Dixneuf PH, Wu XF. Chem. Commun. 2019; 55: 4655
- 41 Zhang W, Wang N.-X, Bai C.-B, Wang Y.-J, Lan X.-W, Xing Y, Li Y.-H, Wen J.-L. Sci. Rep. 2015; 5: 15250
- 42 Lan X.-W, Wang N.-X, Zhang W, Wen J.-L, Bai C.-B, Xing Y, Li Y.-H. Org. Lett. 2015; 17: 4460
- 43 Lan X.-W, Wang N.-X, Bai C.-B, Lan C.-L, Zhang T, Chen S.-L, Xing Y. Org. Lett. 2016; 18: 5986
- 44 Yan Z, Wang N.-X, Gao X.-W, Li J.-L, Wu Y.-H, Zhang T, Chen S.-L, Xing Y. Adv. Synth. Catal. 2019; 361: 1007
- 45 Tian MQ, Wang C, Hu XH, Loh TP. Org. Lett. 2019; 21: 1607
- 46 Su R, Li Y, Min MY, Ouyang XH, Song RJ, Li JH. Chem. Commun. 2018; 54: 13511
- 47 Liu Z.-Q, Sun L, Wang J.-G, Han J, Zhao Y.-K, Zhou B. Org. Lett. 2009; 11: 1437
- 48 Tusun X, Lu C.-D. Synlett 2013; 24: 1693
- 49 Li J, Zhang J, Tan H, Wang DZ. Org. Lett. 2015; 17: 2522
- 50 Zhang J.-X, Wang Y.-J, Zhang W, Wang N.-X, Bai C.-B, Xing Y.-L, Li Y.-H, Wen J.-L. Sci. Rep. 2014; 4: 7446 ; DOI: 10.1038/srep07446
- 51 Wang N.-X, Zhang J.-X, Wang Y.-J, Zhang W, Bai C.-B, Li Y.-H, Wen J.-L. Synlett 2014; 25: 1621
- 52 Zhang T, Lan X.-W, Zhou Y.-Q, Wang N.-X, Wu Y.-H, Xing Y, Wen J.-L. Sci. China: Chem. 2018; 61: 180
- 53 Talukdar D, Borah S, Chaudhuri MK. Tetrahedron Lett. 2015; 56: 2555
- 54 Fan XZ, Rong JW, Wu HL, Zhou Q, Deng HP, Tan JD, Xue CW, Wu LZ, Tao HR, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
- 55 Lee GS, Hong SH. Chem. Sci. 2018; 9: 5810
- 56 Ashley MA, Yamauchi C, Chu JC. K, Otsuka S, Yorimitsu H, Rovis T. Angew. Chem. Int. Ed. 2019; 58: 4002
- 57 Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
- 58 Kibriya G, Bagdi AK, Hajra A. J. Org. Chem. 2018; 83: 10619
- 59 Yang Q, Lou M, Yin Z, Deng Z, Ding Q, Peng Y. Org. Biomol. Chem. 2018; 16: 8724
- 60 Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
- 61 Hsu CW, Sundén H. Org. Lett. 2018; 20: 2051
- 62 Mutra MR, Dhandabani GK, Wang J.-J. Adv. Synth. Catal. 2018; 360: 3960
- 63 San Segundo M, Correa A. ChemSusChem 2018; 11: 3893
- 64 Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051
- 65 Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org. Chem. Front. 2018; 5: 2820