Subscribe to RSS
DOI: 10.1055/s-0039-1690800
Synthetic and Mechanistic Studies on 2,3-Dihydrobenzo[b][1,4]-oxaselenines Formation from Selenocyanates
This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 112-201501-00631CO) to J.B.R., Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015 No 1349) to J.B.R. and (PICT 2016 No 3224) to M.C., and Universidad de Buenos Aires (20020170100067BA) to J.B.R.Publication History
Received: 09 December 2019
Accepted after revision: 29 December 2019
Publication Date:
17 February 2020 (online)
Abstract
An expedient preparation of selenium-containing heterocycles via an m-chloroperbenzoic acid-mediated seleno-annulation starting from selenocyanate derivatives is described. In spite of its significance, this cyclization reaction is virtually understudied not only from the point of view of its scope, but also from the mechanistic aspects associated to this remarkable transformation. In this sense, several selenocyanate and thiocyanate derivatives bearing an aromatic ring were evaluated as substrates under different reaction conditions of this interesting cyclization yielding important insights on its scope as well as relevant information on the reaction mechanism.
Key words
oxaselenines - selenocyanates - heterocycles - radical mechanism - electron transfer reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690800. Included are: copies of 1H NMR, 13C NMR, 19F NMR and 79Se NMR spectra for the target molecules; cyclic voltammetry and square wave voltammetry for compounds 37, 38, 19, 49, 50 and 51; cartesian coordinates, energies (a.u.) and NIMAG for compounds 19, 37, 38, 49, 50, 43, 51, 76 and 77, as well as for cation radicals 37·+, 76·+ and 77·+, and radical 37·.
- Supporting Information
-
References
- 1 Lachkar D, Boudet C, Guinchard X, Crich D. Can. J. Chem. 2012; 90: 944
- 2 Cao Y, Jiang L, Yi W. Adv. Synth. Catal. 2019; 361: 4360
- 3 Guram AS. Synlett 1993; 259
- 4 Potash S, Rozen S. J. Org. Chem. 2014; 79: 11205
- 5 Garud DR, Koketsu M, Ishihara H. Molecules 2007; 12: 504
- 6 Modak A, Pinter EN, Cook SP. J. Am. Chem. Soc. 2019; 141: 18405
- 7 Wei W, Liao L, Qin T, Zhao X. Org. Lett. 2019; 21: 7846
- 8 Dey A, Hajra A. J. Org. Chem. 2019; 84: 14904
- 9 Sommen GL, Linden A, Heimgartner H. Tetrahedron 2006; 62: 3344
- 10 Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 11 Sun L, Yuan Y, Yao M, Wang H, Wang D, Gao M, Chen Y.-H, Aiwen L. Org. Lett. 2019; 21: 1297
- 12 May SW. Top. Med. Chem. 2016; 17: 87
- 13 Zaragoza F. Angew. Chem. Int. Ed. 2000; 39: 2077
- 14 Capper MJ, Wright GS. A, Barbieri L, Luchinat E, Mercatelli E, McAlary L, Yerbury JJ, O’Neill PM, Antonyuk SV, Banci L, Hasnain SS. Nat. Commun. 2018; 9: 1693
- 15 Macegoniuk K, Grela E, Palus J, Rudzińska E, Grabowiecka A, Biernat M, Berlicki Ł. J. Med. Chem. 2016; 59: 8125
- 16 Chao MN, Storey M, Li C, Rodríguez MG, Di Salvo F, Szajnman SH, Moreno SN. J, Docampo R, Rodriguez JB. Bioorg. Med. Chem. 2017; 25: 6435
- 17 Baquedano Y, Nguewa P, Moreno E, Espuelas S, Palop JA, Plano D. Antimicrob. Agents Chemother. 2016; 60: 3802
- 18 Martín-Montes A, Plano D, Martín-Escolano R, Alcolea V, Díaz M, Pérez-Silanes S, Espuelas S, Moreno E, Marín C, Gutiérrez-Sánchez R, Sanmartín C, Sánchez-Moreno M. Antimicrob. Agents Chemother. 2017; 61: e02546-16
- 19 Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. J. Med. Chem. 2016; 59: 1946
- 20 Bouchet LM, Argüello JE. J. Org. Chem. 2018; 83: 5674
- 21 Kodama S, Saeki T, Mihara K, Higashimae S, Kawaguchi SI, Sonoda M, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 12477
- 22 Chen J, Wang T, Wang T, Lin A, Yaoa H, Xu J. Org. Chem. Front. 2017; 4: 130
- 23 Rathore V, Upadhyay A, Kumar S. Org. Lett. 2018; 20: 6274
- 24 Elsherbini M, Hamama WS, Zoorob HH. Coord. Chem. Rev. 2017; 330: 110
- 25 Elsherbini M, Hamama WS, Zoorob HH. Coord. Chem. Rev. 2016; 312: 149
- 26 Potapov VA, Musalov MV, Musalova MV, Amosova S. Curr. Org. Chem. 2016; 20: 136
- 27 Boerma-Markerink MA, Jagt JC, Meyer H, Wildeman J, Van Leusen AM. Synth. Commun. 1975; 5: 147
- 28 Thompson MC, Turner EE. J. Chem. Soc. 1938; 29
- 29 Musalov MV, Potapov VA, Musalova MV, Amosova SV. Russ. Chem. Bull. Int. Ed. 2010; 60: 767
- 30 Potapov VA, Musalov MV, Amosova SV. Tetrahedron Lett. 2011; 52: 4606
- 31 Musalov MV, Yakimov VA, Potapov VA, Amosova SV, Borodina TN, Zinchenko SV. New J. Chem. 2019; 43: 18476
- 32 Xu J, Yu X, Yan J, Song Q. Org. Lett. 2017; 19: 6292
- 33 Maity P, Paroi B, Ranu BC. Org. Lett. 2017; 19: 5748
- 34 Cinque GM, Szajnman SH, Zhong L, Docampo R, Schvartzapel AJ, Rodriguez JB, Gros EG. J. Med. Chem. 1998; 41: 1540
- 35 Desmonts G, Couvreur J. N. Engl. J. Med. 1974; 290: 1110
- 36 Ganguly N, Sukai AK, De S. Synth. Commun. 2001; 31: 301
- 37 Yang X, Xi C, Jiang Y. Tetrahedron Lett. 2005; 46: 8781
- 38 Peterson JR, Do HD, Dunham AJ. Can. J. Chem. 1988; 66: 1670
- 39 Chao MN, Ocampo MV. L, Szajnman SH, Docampo R, Rodriguez JB. Bioorg. Med. Chem. 2019; 27: 1350
- 40 Glenadel Q, Ayad C, Elia MD, Billard T. J. Fluorine Chem. 2018; 210: 112
- 41 Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
- 42 Quiclet-Sire B, Zard SZ. Chem. Eur. J. 2006; 12: 6002
- 43 Armstrong DA, Huie RE, Lymar S, Koppenol WH, Merényi G, Neta P, Stanbury DM, Steenken S, Wardman P. Bioinorg. React. Mech. 2013; 9: 59
- 44 Lin J.-P, Zhang F.-H, Long Y.-Q. Org. Lett. 2014; 16: 2822
- 45 Dean JA. Lange’s Handbook of Chemistry, 15th ed. McGraw-Hill; New York: 1998
- 46 Chao MN, Li C, Storey M, Falcone BN, Szajnman SH, Bonesi SM, Docampo R, Moreno SN. J, Rodriguez JB. ChemMedChem 2016; 11: 2690
- 47 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA. Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision B. 02 . Gaussian, Inc; Wallingford CT: 2004
- 48 Becke AD. J. Chem. Phys. 1993; 98: 5648
- 49 Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
- 50 Krishnan R, Binkley JS, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650
- 51 Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
- 52 Barone V, Cossi M. J. Phys. Chem. A 1998; 102: 1995
- 53 O’Boyle NM, Tenderholt AL, Langner KM. J. Comp. Chem. 2008; 29: 839
- 54 Stokes BJ, Opra SM, Sigman MS. J. Am. Chem. Soc. 2012; 134: 11408
- 55 Shenouda H, Alexanian EJ. Org. Lett. 2019; 21: 9268