Subscribe to RSS
DOI: 10.1055/s-0039-1693160
Novel Approaches to Hasten Detection of Pathogens and Antimicrobial Resistance in the Intensive Care Unit
Publication History
Publication Date:
04 October 2019 (online)
Abstract
Antibiotic resistance is recognized as a key determinant of outcome in patients with serious infections influencing empiric antibiotic practices especially for critically ill patients. Within the intensive care unit (ICU), nosocomial infections and increasingly community-onset infections are caused by multidrug-resistant bacteria. Escalating rates of antibiotic resistance adds substantially to the morbidity, mortality, and cost related to infections treated in the ICU. Both gram-positive organisms, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and gram-negative bacteria, including Pseudomonas aeruginosa, Acinetobacter species, carbapenem-resistant Enterobacteriaceae, and extended spectrum β-lactamase producing organisms, are urgent threats. The rising rates of antimicrobial resistance have resulted in routine empiric administration of broad-spectrum antibiotics by clinicians to critically ill patients even when bacterial infection is microbiologically absent. Moreover, new broad-spectrum antibiotics are a challenge to use effectively while avoiding emergence of further resistance. Use of rapid diagnostic technologies (RDTs) will likely provide an important methodology for achieving this important balance. There is an urgent need for integrating the administration of new and existing antibiotics with RDTs in a way that is safe, cost-effective, applicable in all countries, and sustainable.
-
References
- 1 Sjoding MW, Prescott HC, Wunsch H, Iwashyna TJ, Cooke CR. Longitudinal changes in ICU admissions among elderly patients in the United States. Crit Care Med 2016; 44 (07) 1353-1360
- 2 Vincent JL, Lefrant JY, Kotfis K. , et al; ICON and SOAP Investigators; SOAP Investigators. Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive Care Med 2018; 44 (03) 337-344
- 3 Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/hai/surveillance/data-reports/data-summary-assessing-progress.html . Accessed October 10, 2018
- 4 Rosenthal VD, Al-Abdely HM, El-Kholy AA. , et al; Remaining Authors. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: device-associated module. Am J Infect Control 2016; 44 (12) 1495-1504
- 5 Hayes BH, Haberling DL, Kennedy JL, Varma JK, Fry AM, Vora NM. Burden of pneumonia-associated hospitalizations: United States, 2001–2014. Chest 2018; 153 (02) 427-437
- 6 Nellums LB, Thompson H, Holmes A. , et al. Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis. Lancet Infect Dis 2018; 18 (07) 796-811
- 7 Cantón R, Akóva M, Carmeli Y. , et al; European Network on Carbapenemases. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012; 18 (05) 413-431
- 8 EARS-Net surveillance data. Available at: https://ecdc.europa.eu/sites/portal/files/documents/EAAD%20EARS-Net%20summary.pdf . Accessed January 28, 2019
- 9 Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo) 2017; 70 (05) 520-526
- 10 Bonomo RA, Burd EM, Conly J. , et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 2018; 66 (08) 1290-1297
- 11 Singh S, Pathak A, Kumar A. , et al. Emergence of chromosome-borne colistin resistance gene mcr-1 in clinical isolates of Klebsiella pneumoniae from India. Antimicrob Agents Chemother 2018; 62 (02) pii: e01885-e17
- 12 Paul M, Daikos GL, Durante-Mangoni E. , et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis 2018; 18 (04) 391-400
- 13 Zak-Doron Y, Dishon Benattar Y, Pfeffer I. , et al; AIDA Study Group. The association between empirical antibiotic treatment and mortality in severe infections caused by carbapenem-resistant Gram-negative bacteria: a prospective study. Clin Infect Dis 2018; 67 (12) 1815-1823
- 14 Kollef MH, Bassetti M, Francois B. , et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med 2017; 43 (09) 1187-1197
- 15 Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial Resistance. JAMA 2016; 316 (11) 1193-1204
- 16 Rhodes A, Evans LE, Alhazzani W. , et al. Surviving Sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017; 45 (03) 486-552
- 17 Kollef MH, Burnham JP. Antibiotic thresholds for sepsis and septic shock. Clin Infect Dis 2018 Doi: 10.1093/cid/ciy1035 [Epub ahead of print]
- 18 Seymour CW, Gesten F, Prescott HC. , et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017; 376 (23) 2235-2244
- 19 Liu VX, Morehouse JW, Marelich GP. , et al. Multicenter implementation of a treatment bundle for patients with sepsis and intermediate lactate values. Am J Respir Crit Care Med 2016; 193 (11) 1264-1270
- 20 Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med 2018; 44 (06) 925-928
- 21 Klompas M, Calandra T, Singer M. Antibiotics for sepsis- finding the equilibrium. JAMA 2018; 320 (14) 1433-1434
- 22 Spiegel R, Farkas JD, Rola P. , et al. The 2018 Surviving Sepsis Campaign's Treatment Bundle: when guidelines outpace the evidence supporting their use. Ann Emerg Med 2019; 73 (04) 356-358
- 23 DSA Sepsis Task Force. Infectious Diseases Society of America (IDSA) POSITION STATEMENT: Why IDSA did not endorse the Surviving Sepsis Campaign Guidelines. Clin Infect Dis 2018; 66 (10) 1631-1635
- 24 Marik PE, Farkas JD, Spiegel R, Weingart S. ; Collaborating Authors. POINT: Should the Surviving Sepsis Campaign Guidelines be retired? Yes. Chest 2019; 155 (01) 12-14
- 25 Guillamet CV, Vazquez R, Noe J, Micek ST, Kollef MH. A cohort study of bacteremic pneumonia: the importance of antibiotic resistance and appropriate initial therapy?. Medicine (Baltimore) 2016; 95 (35) e4708
- 26 Peña C, Cabot G, Gómez-Zorrilla S. , et al; Spanish Network for Research in Infectious Diseases (REIPI). Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 2015; 60 (04) 539-548
- 27 Micek ST, Kollef KE, Reichley RM, Roubinian N, Kollef MH. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrob Agents Chemother 2007; 51 (10) 3568-3573
- 28 Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122 (01) 262-268
- 29 Alvarez-Lerma F. ; ICU-Acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med 1996; 22 (05) 387-394
- 30 Zilberberg MD, Shorr AF, Micek ST, Mody SH, Kollef MH. Antimicrobial therapy escalation and hospital mortality among patients with health-care-associated pneumonia: a single-center experience. Chest 2008; 134 (05) 963-968
- 31 Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med 2011; 39 (01) 46-51
- 32 Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115 (02) 462-474
- 33 Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 2003; 31 (12) 2742-2751
- 34 Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 2003; 115 (07) 529-535
- 35 Ferrer R, Artigas A, Suarez D. , et al; Edusepsis Study Group. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 2009; 180 (09) 861-866
- 36 Ferrer R, Martínez ML, Gomà G. , et al; ABISS-Edusepsis Study Group. Improved empirical antibiotic treatment of sepsis after an educational intervention: the ABISS-Edusepsis study. Crit Care 2018; 22 (01) 167
- 37 Eliakim-Raz N, Babitch T, Shaw E. , et al; RESCUING Study Group. Risk factors for treatment failure and mortality among hospitalized patients with complicated urinary tract infection: a multicenter retrospective cohort study (RESCUING Study Group). Clin Infect Dis 2019; 68 (01) 29-36
- 38 Ong DSY, Frencken JF, Klein Klouwenberg PMC. , et al; MARS Consortium. Short-course adjunctive gentamicin as empirical therapy in patients with severe sepsis and septic shock: a prospective observational cohort study. Clin Infect Dis 2017; 64 (12) 1731-1736
- 39 Alam N, Oskam E, Stassen PM. , et al; PHANTASi Trial Investigators and the ORCA (Onderzoeks Consortium Acute Geneeskunde) Research Consortium the Netherlands. Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial. Lancet Respir Med 2018; 6 (01) 40-50
- 40 Martin-Loeches I, Torres A, Rinaudo M. , et al. Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms. J Infect 2015; 70 (03) 213-222
- 41 Maruyama T, Fujisawa T, Ishida T. , et al. A therapeutic strategy for all pneumonia patients: a 3-year prospective multicenter-cohort study using risk factors for multidrug resistant pathogens to select initial empiric therapy. Clin Infect Dis 2019; 68 (07) 1080-1088
- 42 Chen IL, Lee CH, Ting SW, Wang LY. Prediction of imipenem-resistant microorganisms among the nosocomial critically ill patients with Gram-negative bacilli septicemia: a simple risk score. Infect Drug Resist 2018; 11: 283-293
- 43 Tseng WP, Chen YC, Yang BJ. , et al. Predicting multidrug-resistant Gram-negative bacterial colonization and associated infection on hospital admission. Infect Control Hosp Epidemiol 2017; 38 (10) 1216-1225
- 44 Vazquez-Guillamet MC, Vazquez R, Micek ST, Kollef MH. Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria. Clin Infect Dis 2017; 65 (10) 1607-1614
- 45 McDanel J, Schweizer M, Crabb V. , et al. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 2017; 38 (10) 1209-1215
- 46 Harris PNA, Tambyah PA, Lye DC. , et al; MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA 2018; 320 (10) 984-994
- 47 Burnham JP, Lane MA, Kollef MH. Impact of sepsis classification and multidrug-resistance status on outcome among patients treated with appropriate therapy. Crit Care Med 2015; 43 (08) 1580-1586
- 48 Pickens CI, Wunderink RG. Principles and practice of antibiotic stewardship in the ICU. Chest 2019 Doi: 10.1016/j.chest.2019.01.013 [Epub ahead of print]
- 49 Lindsay PJ, Rohailla S, Taggart LR. , et al. Antimicrobial stewardship and intensive care unit (ICU) mortality: a systematic review. Clin Infect Dis 2019; 68 (05) 748-756
- 50 Kollef MH, Burnham CD. Ventilator-associated pneumonia: the role of emerging diagnostic technologies. Semin Respir Crit Care Med 2017; 38 (03) 253-263
- 51 Timbrook TT, Spivak ES, Hanson KE. Current and future opportunities for rapid diagnostics in antimicrobial stewardship. Med Clin North Am 2018; 102 (05) 899-911
- 52 Rood IGH, Li Q. Review: molecular detection of extended spectrum-β-lactamase- and carbapenemase-producing Enterobacteriaceae in a clinical setting. Diagn Microbiol Infect Dis 2017; 89 (03) 245-250
- 53 Tsalik EL, Petzold E, Kreiswirth BN. , et al; and the Diagnostics and Devices Committee; of the Antibacterial Resistance Leadership Group. Advancing diagnostics to address antibacterial resistance: the diagnostics and devices committee of the Antibacterial Resistance Leadership Group. Clin Infect Dis 2017; 64 (Suppl. 01) S41-S47
- 54 Wolk DM, Struelens MJ, Pancholi P. , et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 2009; 47 (03) 823-826
- 55 Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 2004; 4 (06) 337-348
- 56 Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 2017; 8: 108
- 57 Poole S, Kidd SP, Saeed K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination. Expert Rev Mol Diagn 2018; 18 (06) 543-555
- 58 Huang HS, Tsai CL, Chang J, Hsu TC, Lin S, Lee CC. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect 2018; 24 (10) 1055-1063
- 59 Brendish NJ, Malachira AK, Armstrong L. , et al. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 2017; 5 (05) 401-411
- 60 Chang SS, Hsieh WH, Liu TS. , et al. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis - a systemic review and meta-analysis. PLoS One 2013; 8 (05) e62323
- 61 Buchan BW, Ginocchio CC, Manii R. , et al. Multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med 2013; 10 (07) e1001478
- 62 Ledeboer NA, Lopansri BK, Dhiman N. , et al. Identification of Gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the Verigene Gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol 2015; 53 (08) 2460-2472
- 63 Faron ML, Buchan BW, Ledeboer NA. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for use with positive blood cultures: methodology, performance, and optimization. J Clin Microbiol 2017; 55 (12) 3328-3338
- 64 Cordovana M, Kostrzewa M, Glandorf J, Bienia M, Ambretti S, Pranada AB. A full MALDI-based approach to detect plasmid-encoded KPC-producing Klebsiella pneumoniae . Front Microbiol 2018; 9: 2854
- 65 Oviaño M, Bou G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. Clin Microbiol Rev 2018 32. (01): Doi: 10.1128/CMR.00037-18
- 66 Koncan R, Parisato M, Sakarikou C. , et al. Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (-) Panel, a beacon-based FISH methodology. Eur J Clin Microbiol Infect Dis 2015; 34 (10) 2097-2102
- 67 Martinez RM, Bauerle ER, Fang FC, Butler-Wu SM. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures. J Clin Microbiol 2014; 52 (07) 2521-2529
- 68 Deck MK, Anderson ES, Buckner RJ. , et al. Rapid detection of Enterococcus spp. direct from blood culture bottles using Enterococcus QuickFISH method: a multicenter investigation. Diagn Microbiol Infect Dis 2014; 78 (04) 338-342
- 69 Maurer FP, Christner M, Hentschke M, Rohde H. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. Infect Dis Rep 2017; 9 (01) 6839
- 70 Lutgring JD, Bittencourt C, McElvania TeKippe E. , et al. Evaluation of the Accelerate Pheno system: results from two academic medical centers. Clin Microbiol 2018; 201 (56) pii: e01672-e17
- 71 De Angelis G, Posteraro B, Menchinelli G, Liotti FM, Spanu T, Sanguinetti M. Antimicrobial susceptibility testing of pathogens isolated from blood culture: a performance comparison of Accelerate Pheno™ and VITEK® 2 systems with the broth microdilution method. J Antimicrob Chemother 2019; 74 (Suppl. 01) i24-i31
- 72 Descours G, Desmurs L, Hoang TLT. , et al. Evaluation of the Accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections. Eur J Clin Microbiol Infect Dis 2018; 37 (08) 1573-1583
- 73 Burnham JP, Wallace MA, Fuller BM. , et al. Clinical impact of expedited pathogen identification and susceptibility testing for Gram-negative bacteremia and Candidemia using the Accelerate PhenoTM system. J Appl Lab Med 2019; 3 (04) 569-579
- 74 Clancy CJ, Pappas PG, Vazquez J. , et al. Detecting infections rapidly and easily for Candidemia trial, part 2 (DIRECT2): a prospective, multicenter study of the T2Candida panel. Clin Infect Dis 2018; 66 (11) 1678-1686
- 75 Hanson III CW, Thaler ER. Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology 2005; 102 (01) 63-68
- 76 Kunze-Szikszay N, Walliser K, Luther J. , et al. Detecting early markers of ventilator-associated pneumonia by analysis of exhaled gas. Crit Care Med 2019; 47 (03) e234-e240
- 77 van Oort PM, Nijsen T, Weda H. , et al; BreathDx Consortium. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study. BMC Pulm Med 2017; 17 (01) 1
- 78 Shrestha NK, Lim SH, Wilson DA. , et al. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array. PLoS One 2017; 12 (03) e0173130
- 79 Timsit JF, Bassetti M, Cremer O. , et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 2019; 45 (02) 172-189
- 80 Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017; 64 (01) 15-23
- 81 Banerjee R, Teng CB, Cunningham SA. , et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 2015; 61 (07) 1071-1080
- 82 Pogue JM, Heil EL, Lephart P. , et al. An antibiotic stewardship program blueprint for optimizing Verigene BC-GN within an institution: a tale of two cities. Antimicrob Agents Chemother 2018; 62 (05) pii: e02538-e17
- 83 MacVane SH, Hurst JM, Boger MS, Gnann Jr JW. Impact of a rapid multiplex polymerase chain reaction blood culture identification technology on outcomes in patients with vancomycin-resistant Enterococcal bacteremia. Infect Dis (Lond) 2016; 48 (10) 732-737
- 84 Walker T, Dumadag S, Lee CJ. , et al. Clinical impact of laboratory implementation of Verigene BC-GN microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J Clin Microbiol 2016; 54 (07) 1789-1796
- 85 MacVane SH, Nolte FS. Benefits of adding a rapid PCR-based blood culture identification panel to an established antimicrobial stewardship program. J Clin Microbiol 2016; 54 (10) 2455-2463
- 86 Bookstaver PB, Nimmich EB, Smith III TJ. , et al. Cumulative effect of an antimicrobial stewardship and rapid diagnostic testing bundle on early streamlining of antimicrobial therapy in Gram-negative bloodstream infections. Antimicrob Agents Chemother 2017; 61 (09) pii: e00189-e17
- 87 Rivard KR, Athans V, Lam SW. , et al. Impact of antimicrobial stewardship and rapid microarray testing on patients with Gram-negative bacteremia. Eur J Clin Microbiol Infect Dis 2017; 36 (10) 1879-1887
- 88 Rautemaa-Richardson R, Rautemaa V, Al-Wathiqi F. , et al. Impact of a diagnostics-driven antifungal stewardship programme in a UK tertiary referral teaching hospital. J Antimicrob Chemother 2018; 73 (12) 3488-3495
- 89 Forrest GN, Mankes K, Jabra-Rizk MA. , et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol 2006; 44 (09) 3381-3383
- 90 Patterson TF, Donnelly JP. New concepts in diagnostics for invasive mycoses: non-culture-based methodologies. J Fungi (Basel) 2019; 5 (01) E9
- 91 Lee HY, Chen CL, Wu SR, Huang CW, Chiu CH. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit Care Med 2014; 42 (05) 1081-1088
- 92 Averbuch D, Tridello G, Hoek J. , et al. Antimicrobial resistance in Gram-negative rods causing bacteremia in hematopoietic stem cell transplant recipients: intercontinental prospective study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin Infect Dis 2017; 65 (11) 1819-1828
- 93 Perez KK, Olsen RJ, Musick WL. , et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect 2014; 69 (03) 216-225
- 94 Kollef MH. Hospital-acquired pneumonia and de-escalation of antimicrobial treatment. Crit Care Med 2001; 29 (07) 1473-1475
- 95 Tamma PD, Miller MA, Cosgrove SE. Rethinking how antibiotics are prescribed: incorporating the 4 moments of antibiotic decision making into clinical practice. JAMA 2019; 321 (02) 139-140
- 96 Ruiz J, Ramirez P, Gordon M. , et al. Antimicrobial stewardship programme in critical care medicine: a prospective interventional study. Med Intensiva 2018; 42 (05) 266-273
- 97 Tabah A, Cotta MO, Garnacho-Montero J. , et al. A systematic review of the definitions, determinants, and clinical outcomes of antimicrobial de-escalation in the intensive care unit. Clin Infect Dis 2016; 62 (08) 1009-1017
- 98 Trupka T, Fisher K, Micek ST, Juang P, Kollef MH. Enhanced antimicrobial de-escalation for pneumonia in mechanically ventilated patients: a cross-over study. Crit Care 2017; 21 (01) 180
- 99 Moraes RB, Guillén JAV, Zabaleta WJC, Borges FK. De-escalation, adequacy of antibiotic therapy and culture positivity in septic patients: an observational study. Rev Bras Ter Intensiva 2016; 28 (03) 315-322
- 100 Cowley MC, Ritchie DJ, Hampton N, Kollef MH, Micek ST. Outcomes associated with de-escalating therapy for methicillin-resistant Staphylococcus aureus in culture-negative nosocomial pneumonia. Chest 2019; 155 (01) 53-59
- 101 Turza KC, Politano AD, Rosenberger LH, Riccio LM, McLeod M, Sawyer RG. De-escalation of antibiotics does not increase mortality in critically ill surgical patients. Surg Infect (Larchmt) 2016; 17 (01) 48-52
- 102 Schneider JG, Wood JB, Schmitt BH. , et al. Susceptibility provision enhances effective de-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact. J Antimicrob Chemother 2019; 74 (Suppl. 01) i16-i23
- 103 Palacios-Baena ZR, Delgado-Valverde M, Valiente Méndez A. , et al; REIPI/GEIRAS-SEIMC BACTERIEMIA-MIC group. Impact of de-escalation on prognosis of patients with bacteraemia due to Enterobacteriaceae: a post-hoc analysis from a multicenter prospective cohort. Clin Infect Dis 2018 ; [Epub ahead of print]. doi: 10.1093/cid/ciy1032