Semin Thromb Hemost 2020; 46(05): 592-605
DOI: 10.1055/s-0039-3399568
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Applications of Nanotechnology in the Diagnosis and Therapy of Stroke

Lila M. Landowski
1   Stroke Research Unit, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
,
Be'eri Niego
2   NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
,
Brad A. Sutherland
1   Stroke Research Unit, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
,
Christoph E. Hagemeyer
2   NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
,
David W. Howells
1   Stroke Research Unit, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
13 December 2019 (online)

Abstract

Stroke is a leading cause of death and disability worldwide. The classification of stroke subtypes is difficult but critical for the prediction of clinical course and patient management, and limited treatment options are available. There is an urgent need for improvements in both diagnosis and therapy. Strokes have rapidly evolving phases of damage involving unique compartments of the brain, which imposes severe limitations for current diagnostic and treatment procedures. The rapid development of nanotechnology in other areas of modern medicine has ignited a widespread interest in its potential for the field of stroke. An important feature of nanoparticles is the relative ease in which their structures and surface chemistries can be modified for specific and potentially multiple, simultaneous purposes. Nanoparticles can be synthesized to carry and deliver therapeutics to specific cellular or subcellular compartments; they can be engineered to provide enhanced contrast for imaging based on the detection of changes in the blood flow; or possess ligand-specific chemistries which can facilitate diagnosis and monitor the treatment response. More specifically for a stroke, nanoparticles can be engineered to release their payload in response to the distinct extracellular processes occurring around the clot and in the ischemic penumbra, as well as aid in the detection of pathological hallmarks present at various stages of stroke progression. These capacities allow targeted release of disease-modifying agents in the affected brain tissue, increasing treatment efficacy, and limiting unwanted side effects. While nanospheres, liposomes, and mesoporous nanostructures all emerge as future prospects for stroke treatment and diagnosis, much of this potential is yet to be clinically realized. This review outlines aspects of nanotechnology identified as having potential to revolutionize the field of stroke.

 
  • References

  • 1 Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 2008; 371 (9624): 1612-1623
  • 2 Hackett ML, Köhler S, O'Brien JT, Mead GE. Neuropsychiatric outcomes of stroke. Lancet Neurol 2014; 13 (05) 525-534
  • 3 Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006; 367 (9524): 1747-1757
  • 4 Muir KW, Buchan A, von Kummer R, Rother J, Baron J-C. Imaging of acute stroke. Lancet Neurol 2006; 5 (09) 755-768
  • 5 Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32 (02) 200-219
  • 6 Bracard S, Schmitt E. Vasospasm and delayed consequences. Interv Neuroradiol 2008; 14 (Suppl. 01) 17-22
  • 7 Condette-Auliac S, Bracard S, Anxionnat R. , et al. Vasospasm after subarachnoid hemorrhage: interest in diffusion-weighted MR imaging. Stroke 2001; 32 (08) 1818-1824
  • 8 Hacke W, Kaste M, Bluhmki E. , et al; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359 (13) 1317-1329
  • 9 Jauch EC, Saver JL, Adams Jr HP. , et al; American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44 (03) 870-947
  • 10 Stroke Foundation. Clinical Guidelines for Stroke Management 2017. Melbourne, Australia: Stroke Foundation; 2017
  • 11 Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology 2001; 56 (08) 1015-1020
  • 12 Fink JN, Kumar S, Horkan C. , et al. The stroke patient who woke up: clinical and radiological features, including diffusion and perfusion MRI. Stroke 2002; 33 (04) 988-993
  • 13 Faiz KW, Sundseth A, Thommessen B, Rønning OM. Reasons for low thrombolysis rate in a Norwegian ischemic stroke population. Neurol Sci 2014; 35 (12) 1977-1982
  • 14 Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133 (6, Suppl): 630S-669S
  • 15 Minnerup J, Wersching H, Ringelstein EB. , et al. Impact of the extended thrombolysis time window on the proportion of recombinant tissue-type plasminogen activator-treated stroke patients and on door-to-needle time. Stroke 2011; 42 (10) 2838-2843
  • 16 Krogias C, Bartig D, Kitzrow M, Weber R, Eyding J. Trends of hospitalized acute stroke care in Germany from clinical trials to bedside. Comparison of nation-wide administrative data 2008-2012. J Neurol Sci 2014; 345 (1-2): 202-208
  • 17 Sokolov SV, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton RG. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem 2015; 87 (19) 10033-10039
  • 18 Ruff Z, Cloetens P, O'Neill T, Grey CP, Eiser E. Thermally reversible nanoparticle gels with tuneable porosity showing structural colour. Phys Chem Chem Phys 2017; 20 (01) 467-477
  • 19 Wang F, He C, Han M-Y, Wu JH, Xu GQ. Chemical controlled reversible gold nanoparticles dissolution and reconstruction at room-temperature. Chem Commun (Camb) 2012; 48 (49) 6136-6138
  • 20 Klajn R, Bishop KJM, Grzybowski BA. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc Natl Acad Sci U S A 2007; 104 (25) 10305-10309
  • 21 Binder WH, Lomoschitz M, Sachsenhofer R, Friedbacher G. Reversible and irreversible binding of nanoparticles to polymeric surfaces. J Nanomater 2009; 2009: 14
  • 22 Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98: 3-18
  • 23 Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 2014; 5 (01) 2-13
  • 24 Vallet-Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 2006; 12 (23) 5934-5943
  • 25 Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 2013; 34: 243-253
  • 26 Yazdi AS, Guarda G, Riteau N. , et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci U S A 2010; 107 (45) 19449-19454
  • 27 Murphy A, Casey A, Byrne G, Chambers G, Howe O. Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes. J Appl Toxicol 2016; 36 (10) 1311-1320
  • 28 Park E-J, Lee G-H, Yoon C. , et al. Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J Appl Toxicol 2016; 36 (03) 424-433
  • 29 Liu Q, Babadjouni R, Radwanski R. , et al. Stroke damage is exacerbated by nano-size particulate matter in a Mouse model. PLoS One 2016; 11 (04) e0153376
  • 30 Kane AB, Hurt RH, Gao H. The asbestos-carbon nanotube analogy: an update. Toxicol Appl Pharmacol 2018; 361: 68-80
  • 31 Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl (Wien) 2010; 106: 359-364
  • 32 Haley MJ, Lawrence CB. The blood-brain barrier after stroke: structural studies and the role of transcytotic vesicles. J Cereb Blood Flow Metab 2017; 37 (02) 456-470
  • 33 Wei W, Zhang X, Chen X, Zhou M, Xu R, Zhang X. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale 2016; 8 (15) 8118-8125
  • 34 Muir KW, Santosh C. Imaging of acute stroke and transient ischaemic attack. J Neurol Neurosurg Psychiatry 2005; 76 (Suppl. 03) iii19-iii28
  • 35 Agarwal S, Jones PS, Alawneh JA. , et al. Does perfusion computed tomography facilitate clinical decision making for thrombolysis in unselected acute patients with suspected ischaemic stroke?. Cerebrovasc Dis 2011; 32 (03) 227-233
  • 36 Das NM, Hatsell S, Nannuru K. , et al. In vivo quantitative microcomputed tomographic analysis of vasculature and organs in a normal and diseased mouse model. PLoS One 2016; 11 (02) e0150085
  • 37 Mishra NK, Albers GW, Davis SM. , et al. Mismatch-based delayed thrombolysis: a meta-analysis. Stroke 2010; 41 (01) e25-e33
  • 38 Toth GB, Varallyay CG, Horvath A. , et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 2017; 92 (01) 47-66
  • 39 Qin J, Zhou S, Li Z, Chen Y, Qin Q, Ai T. Combination of magnetic resonance imaging and targeted contrast agent for the diagnosis of myocardial infarction. Exp Ther Med 2018; 16 (04) 3303-3308
  • 40 Ewing JR, Knight RA, Nagaraja TN. , et al. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 2003; 50 (02) 283-292
  • 41 Liu DF, Qian C, An YL, Chang D, Ju SH, Teng GJ. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale 2014; 6 (24) 15161-15167
  • 42 Wei H, Bruns OT, Kaul MG. , et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A 2017; 114 (09) 2325-2330
  • 43 Farr TD, Lai CH, Grünstein D. , et al. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. Nano Lett 2014; 14 (04) 2130-2134
  • 44 Shah BN, Chahal NS, Kooner JS, Senior R. Contrast-enhanced ultrasonography vs B-mode ultrasound for visualization of intima-media thickness and detection of plaques in human carotid arteries. Echocardiography 2017; 34 (05) 723-730
  • 45 Luke GP, Hannah AS, Emelianov SY. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett 2016; 16 (04) 2556-2559
  • 46 Ludewig P, Gdaniec N, Sedlacik J. , et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 2017; 11 (10) 10480-10488
  • 47 Brea D, Agulla J, Staes A. , et al. Study of protein expression in peri-infarct tissue after cerebral ischemia. Sci Rep 2015; 5: 12030
  • 48 Hoyte LC, Brooks KJ, Nagel S. , et al. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 2010; 30 (06) 1178-1187
  • 49 Blau R, Epshtein Y, Pisarevsky E. , et al. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics 2018; 8 (13) 3437-3460
  • 50 Joo J, Liu X, Kotamraju VR, Ruoslahti E, Nam Y, Sailor MJ. Gated luminescence imaging of silicon nanoparticles. ACS Nano 2015; 9 (06) 6233-6241
  • 51 Kim T, Lemaster JE, Chen F, Li J, Jokerst JV. Photoacoustic imaging of human mesenchymal stem cells labeled with Prussian Blue-Poly(l-lysine) nanocomplexes. ACS Nano 2017; 11 (09) 9022-9032
  • 52 Muir KW. Clinical trial design for stem cell therapies in stroke: what have we learned?. Neurochem Int 2017; 106: 108-113
  • 53 Li J, Wu C, Hou P, Zhang M, Xu K. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens Bioelectron 2018; 102: 1-8
  • 54 Lin KY, Kwong GA, Warren AD, Wood DK, Bhatia SN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 2013; 7 (10) 9001-9009
  • 55 Sun Y, Gao W, Zhao Y. , et al. Visualization and inhibition of mitochondria-nuclear translocation of apoptosis inducing factor by a graphene oxide-DNA nanosensor. Anal Chem 2017; 89 (08) 4642-4647
  • 56 Gong T, Hong ZY, Chen CH, Tsai CY, Liao LD, Kong KV. Optical interference-free surface-enhanced Raman scattering CO-nanotags for logical multiplex detection of vascular disease-related biomarkers. ACS Nano 2017; 11 (03) 3365-3375
  • 57 Hu Y, Cheng H, Zhao X. , et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017; 11 (06) 5558-5566
  • 58 Hasan N, McColgan P, Bentley P, Edwards RJ, Sharma P. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol 2012; 74 (02) 230-240
  • 59 Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke 2008; 39 (10) 2902-2909
  • 60 Misra S, Kumar A, Kumar P. , et al. Blood-based protein biomarkers for stroke differentiation: a systematic review. Proteomics Clin Appl 2017; 11: 9-10
  • 61 Monbailliu T, Goossens J, Hachimi-Idrissi S. Blood protein biomarkers as diagnostic tool for ischemic stroke: a systematic review. Biomarkers Med 2017; 11 (06) 503-512
  • 62 Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta 2016; 1862 (03) 411-424
  • 63 Glushakova OY, Glushakov AV, Miller ER, Valadka AB, Hayes RL. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ 2016; 2 (01) 28-47
  • 64 Ilies M, Iuga CA, Loghin F, Dhople VM, Hammer E. Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification. Clujul Med 2017; 90 (04) 425-430
  • 65 Chen JQ, Wakefield LM, Goldstein DJ. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics. J Transl Med 2015; 13: 182
  • 66 Ahmad R, Mahmoudi T, Ahn MS, Hahn YB. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens Bioelectron 2018; 100: 312-325
  • 67 Wang Z, Lee S, Koo K, Kim K. Nanowire-based sensors for biological and medical applications. IEEE Trans Nanobioscience 2016; 15 (03) 186-199
  • 68 Lu N, Gao A, Dai P. , et al. Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays. Anal Chem 2015; 87 (22) 11203-11208
  • 69 Stern E, Vacic A, Rajan NK. , et al. Label-free biomarker detection from whole blood. Nat Nanotechnol 2010; 5 (02) 138-142
  • 70 Biodirection. Tbit™ Blood Testing Platform. 2019 . Available at: http://biodirection.com/tbit-platform/ . Accessed March 13, 2019
  • 71 Ren C, Kobeissy F, Alawieh A. , et al. Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci Rep 2016; 6: 24588-24588
  • 72 Hasanzadeh M, Rahimi S, Solhi E. , et al. Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem J 2018; 143: 379-392
  • 73 Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández-Baldo MA, Raba J. Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 2017; 464: 64-71
  • 74 Zhou YC, Zhao M, Yu YQ. , et al. Three-dimensional nano-network composed of Pt nanoparticles functionalized Mn-doped CeO2 and hemin/G-quadruplex as electrocatalysts for cardiovascular biomarker detection. Sens Actuators B Chem 2017; 246: 1-8
  • 75 Quero G, Consales M, Severino R. , et al. Long period fiber grating nano-optrode for cancer biomarker detection. Biosens Bioelectron 2016; 80: 590-600
  • 76 Niu G, Chen X. The role of molecular imaging in drug delivery. Drug Deliv (Lond) 2009; 3: 109-113
  • 77 Kim J-Y, Ryu JH, Schellingerhout D. , et al. Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 2015; 5 (10) 1098-1114
  • 78 Voros E, Cho M, Ramirez M. , et al. TPA immobilization on iron oxide nanocubes and localized magnetic hyperthermia accelerate blood clot lysis. Adv Funct Mater 2015; 25 (11) 1709-1718
  • 79 Li M, Liu Y, Chen J. , et al. Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics 2018; 8 (18) 4870-4883
  • 80 Agulla J, Brea D, Campos F. , et al. In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics 2013; 4 (01) 90-105
  • 81 Campbell BCV, Donnan GA, Mitchell PJ, Davis SM. Endovascular thrombectomy for stroke: current best practice and future goals. Stroke Vasc Neurol 2016; 1 (01) 16-22
  • 82 Thiebaut AM, Gauberti M, Ali C. , et al. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol 2018; 17 (12) 1121-1132
  • 83 Weitz JI, Leslie B, Hirsh J, Klement P. Alpha 2-antiplasmin supplementation inhibits tissue plasminogen activator-induced fibrinogenolysis and bleeding with little effect on thrombolysis. J Clin Invest 1993; 91 (04) 1343-1350
  • 84 Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis?. J Cereb Blood Flow Metab 2014; 34 (08) 1283-1296
  • 85 Caplan LR. Stroke thrombolysis: slow progress. Circulation 2006; 114 (03) 187-190
  • 86 Liu S, Feng X, Jin R, Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 2018; 15 (02) 173-184
  • 87 Zamanlu M, Farhoudi M, Eskandani M. , et al. Recent advances in targeted delivery of tissue plasminogen activator for enhanced thrombolysis in ischaemic stroke. J Drug Target 2018; 26 (02) 95-109
  • 88 Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 2009; 30 (29) 5751-5756
  • 89 Uesugi Y, Kawata H, Saito Y, Tabata Y. Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator. J Drug Target 2012; 20 (03) 224-234
  • 90 Colasuonno M, Palange AL, Aid R. , et al. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 2018; 12 (12) 12224-12237
  • 91 Absar S, Choi S, Yang VC, Kwon YM. Heparin-triggered release of camouflaged tissue plasminogen activator for targeted thrombolysis. J Control Release 2012; 157 (01) 46-54
  • 92 Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 2008; 29 (02) 228-237
  • 93 Mahmoodi M, Khosroshahi ME, Atyabi F. Dynamic study of PLGA/CS nanoparticles delivery containing drug model into phantom tissue using CO2 laser for clinical applications. J Biophotonics 2011; 4 (06) 403-414
  • 94 Wen AM, Wang Y, Jiang K. , et al. Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J Mater Chem B Mater Biol Med 2015; 3 (29) 6037-6045
  • 95 Pitek AS, Park J, Wang Y. , et al. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale 2018; 10 (35) 16547-16555
  • 96 Huang Y, Yu L, Ren J. , et al. An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy. J Control Release 2019; 300: 1-12
  • 97 Donnan GA, Davis SM, Parsons MW, Ma H, Dewey HM, Howells DW. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat Rev Neurol 2011; 7 (07) 400-409
  • 98 Francis CW. Ultrasound-enhanced thrombolysis. Echocardiography 2001; 18 (03) 239-246
  • 99 Alexandrov AV, Mikulik R, Ribo M. , et al. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008; 39 (05) 1464-1469
  • 100 Schellinger PD, Alexandrov AV, Barreto AD. , et al; CLOTBUSTER Investigators. Combined lysis of thrombus with ultrasound and systemic tissue plasminogen activator for emergent revascularization in acute ischemic stroke (CLOTBUST-ER): design and methodology of a multinational phase 3 trial. Int J Stroke 2015; 10 (07) 1141-1148
  • 101 de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11 (02) 187-209
  • 102 Laing ST, Moody MR, Kim H. , et al. Thrombolytic efficacy of tissue plasminogen activator-loaded echogenic liposomes in a rabbit thrombus model. Thromb Res 2012; 130 (04) 629-635
  • 103 Hua X, Zhou L, Liu P. , et al. In vivo thrombolysis with targeted microbubbles loading tissue plasminogen activator in a rabbit femoral artery thrombus model. J Thromb Thrombolysis 2014; 38 (01) 57-64
  • 104 Alexandrov AV, Molina CA, Grotta JC. , et al; CLOTBUST Investigators. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004; 351 (21) 2170-2178
  • 105 Molina CA, Barreto AD, Tsivgoulis G. , et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol 2009; 66 (01) 28-38
  • 106 Nacu A, Kvistad CE, Naess H. , et al. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. Stroke 2017; 48 (02) 335-341
  • 107 Teng Y, Jin H, Nan D. , et al. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model. Bioact Mater 2017; 3 (01) 102-109
  • 108 Heid S, Unterweger H, Tietze R. , et al. Synthesis and characterization of tissue plasminogen activator-functionalized superparamagnetic iron oxide nanoparticles for targeted fibrin clot dissolution. Int J Mol Sci 2017; 18 (09) E1837
  • 109 Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009; 30 (28) 5125-5130
  • 110 Chen J-P, Yang P-C, Ma Y-H, Wu T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbonate Polym 2011; 84 (01) 364-372
  • 111 Yang H-W, Hua M-Y, Lin K-J. , et al. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis. Int J Nanomedicine 2012; 7: 5159-5173
  • 112 Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int J Nanomedicine 2012; 7: 5137-5149
  • 113 Cheng R, Huang W, Huang L. , et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano 2014; 8 (08) 7746-7754
  • 114 Kempe M, Kempe H, Snowball I. , et al. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 2010; 31 (36) 9499-9510
  • 115 Bonnard T, Tennant Z, Niego B. , et al. Novel thrombolytic drug based on thrombin cleavable microplasminogen coupled to a single-chain antibody specific for activated GPIIb/IIIa. J Am Heart Assoc 2017; 6 (02) e004535
  • 116 Zhang N, Li C, Zhou D. , et al. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater 2018; 70: 227-236
  • 117 Arjmand S, Pardakhty A, Forootanfar H, Khazaeli P. A road to bring Brij52 back to attention: shear stress sensitive Brij52 niosomal carriers for targeted drug delivery to obstructed blood vessels. Med Hypotheses 2018; 121: 137-141
  • 118 Molloy CP, Yao Y, Kammoun H. , et al. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation. J Thromb Haemost 2017; 15 (05) 972-982
  • 119 Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res 2017; 120 (03) 541-558
  • 120 O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006; 59 (03) 467-477
  • 121 Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64 (07) 686-700
  • 122 Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004; 56 (04) 468-477
  • 123 Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303
  • 124 Koffie RM, Farrar CT, Saidi L-J, William CM, Hyman BT, Spires-Jones TL. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A 2011; 108 (46) 18837-18842
  • 125 Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine (Lond) 2009; 5 (04) 369-377
  • 126 Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer's disease and Parkinson's disease). J Drug Deliv 2011; 2011: 469679
  • 127 Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-332
  • 128 Cheng Y, Dai Q, Morshed RA. , et al. Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 2014; 10 (24) 5137-5150
  • 129 Trickler WJ, Lantz SM, Murdock RC. , et al. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 2010; 118 (01) 160-170
  • 130 Grabrucker AM, Rowan M, Garner CC. Brain-delivery of zinc-ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 2011; 1 (01) 13-23
  • 131 Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332-348
  • 132 Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today 2015; 10 (04) 487-510
  • 133 Harris NM, Ritzel R, Mancini NS. , et al. Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacol Biochem Behav 2016; (150-151): 48-56
  • 134 Gaudin A, Yemisci M, Eroglu H. , et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 2014; 9 (12) 1054-1062
  • 135 Niego B, Freeman R, Puschmann TB, Turnley AM, Medcalf RL. t-PA-specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood 2012; 119 (20) 4752-4761
  • 136 Fukuta T, Asai T, Yanagida Y. , et al. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB J 2017; 31 (05) 1879-1890
  • 137 Fukuta T, Yanagida Y, Asai T, Oku N. Co-administration of liposomal fasudil and tissue plasminogen activator ameliorated ischemic brain damage in occlusion model rats prepared by photochemically induced thrombosis. Biochem Biophys Res Commun 2018; 495 (01) 873-877
  • 138 Guo X, Deng G, Liu J. , et al. Thrombin-responsive, brain-targeting nanoparticles for improved stroke therapy. ACS Nano 2018; 12 (08) 8723-8732
  • 139 Wang T, Hou Y, Bu B. , et al. Timely visualization of the collaterals formed during acute ischemic stroke with Fe3O4 nanoparticle-based MR imaging probe. Small 2018; 14 (23) e1800573
  • 140 Hoehn B, Ringer TM, Xu L. , et al. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab 2001; 21 (11) 1303-1309
  • 141 Weinstein PR, Hong S, Sharp FR. Molecular identification of the ischemic penumbra. Stroke 2004; 35 (11) (Suppl. 01) 2666-2670
  • 142 Bitner BR, Marcano DC, Berlin JM. , et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano 2012; 6 (09) 8007-8014
  • 143 Berlin JM, Leonard AD, Pham TT. , et al. Effective drug delivery, in vitro and in vivo, by carbon-based nanovectors noncovalently loaded with unmodified Paclitaxel. ACS Nano 2010; 4 (08) 4621-4636
  • 144 Fabian RH, Derry PJ, Rea HC. , et al. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of reversible middle cerebral artery stroke in acutely hyperglycemic rats. Front Neurol 2018; 9: 199
  • 145 Shen Y, Cao B, Snyder NR, Woeppel KM, Eles JR, Cui XT. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J Nanobiotechnology 2018; 16 (01) 13
  • 146 Lv W, Xu J, Wang X, Li X, Xu Q, Xin H. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018; 12 (06) 5417-5426
  • 147 Shen Z, Liu T, Li Y. , et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 2018; 12 (11) 11355-11365
  • 148 Petro M, Jaffer H, Yang J, Kabu S, Morris VB, Labhasetwar V. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain. Biomaterials 2016; 81: 169-180
  • 149 Yun S, Shin TH, Lee JH. , et al. Design of magnetically labeled cells (Mag-Cells) for in vivo control of stem cell migration and differentiation. Nano Lett 2018; 18 (02) 838-845
  • 150 Chung CY, Lin MH, Lee IN, Lee TH, Lee MH, Yang JT. Brain-derived neurotrophic factor loaded PS80 PBCA nanocarrier for in vitro neural differentiation of mouse induced pluripotent stem cells. Int J Mol Sci 2017; 18 (03) E663
  • 151 Pluta RM, Hansen-Schwartz J, Dreier J. , et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 2009; 31 (02) 151-158
  • 152 Hwang PK, Greer J. Interaction between hemoglobin subunits in the hemoglobin. haptoglobin complex. J Biol Chem 1980; 255 (07) 3038-3041
  • 153 Kristiansen M, Graversen JH, Jacobsen C. , et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409 (6817): 198-201
  • 154 Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G. CD163 expression in neurons after experimental intracerebral hemorrhage. Stroke 2017; 48 (05) 1369-1375
  • 155 Galea J, Cruickshank G, Teeling JL. , et al. The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem 2012; 121 (05) 785-792
  • 156 Betzer O, Perets N, Angel A. , et al. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 2017; 11 (11) 10883-10893
  • 157 Li H, Ohta H, Tahara Y. , et al. Artificial oxygen carriers rescue placental hypoxia and improve fetal development in the rat pre-eclampsia model. Sci Rep 2015; 5: 15271
  • 158 Kazemi Korayem A, Ghamami S, Bahrami Z. Fractal properties and morphological investigation of nano hydrochlorothiazide is used to treat hypertension. BMC Pharmacol Toxicol 2018; 19 (01) 70
  • 159 Khan A, Aqil M, Imam SS. , et al. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: characterization, nasal absorption, histopathology and cell line study. Int J Biol Macromol 2018; 116: 1260-1267
  • 160 Jiang Y, Wang X, Liu X. , et al. Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl Mater Interfaces 2017; 9 (01) 211-217
  • 161 Hall CN, Reynell C, Gesslein B. , et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014; 508 (7494): 55-60
  • 162 Guan S, Zhao Y, Lu J. , et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget 2016; 7 (46) 75914-75925
  • 163 Loi M, Marchiò S, Becherini P. , et al. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release 2010; 145 (01) 66-73
  • 164 Kang E, Shin JW. Pericyte-targeting drug delivery and tissue engineering. Int J Nanomedicine 2016; 11: 2397-2406