Subscribe to RSS
DOI: 10.1055/s-0039-3402059
Lock-and-Key Exciplexes for Thermally Activated Delayed Fluorescence
Funding Information This study was funded by the Air Force Office of Scientific Research (FA9550-18-1-0341), the Department of Energy, Labor and Economic Growth (DE-FG02-07ER46474), DFG (EN 1138/1-1), NIH (GM112272), and Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (PA00P2-145389).Publication History
Received: 19 October 2019
Accepted after revision: 05 November 2019
Publication Date:
16 January 2020 (online)
Abstract
We combine synthetic supramolecular chemistry and materials science to develop novel exciplexes for thermally activated delayed fluorescence. Our approach starts from a bowl-shaped acceptor molecule for which we synthesize tailor-made donors that bind in a lock-and-key fashion. The donor design is guided by extensive density functional theory calculations of three independent donor families. The investigation of a large number of custom-synthesized donors allows us to derive empirical relationships for the prediction of the exciplex emission color. Incorporated within organic light-emitting devices, the lock-and-key exciplexes yield external quantum efficiencies of up to 5.4%, with potentially tunable emission color across the blue and green visible spectrum.
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0039-3402059.
-
References
- 1 Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys. Lett. 2011; 98: 083302
- 2 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
- 3 Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat. Photonics 2014; 8: 326
- 4 Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater. 2014; 26: 7931
- 5 Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T. Green Chem. 2015; 17: 1988
- 6 Cho YJ, Yook KS, Lee JY. Adv. Mater. 2014; 26: 4050
- 7 Lee DR, Kim BS, Lee CW, Im Y, Yook KS, Hwang SH, Lee JY. ACS Appl. Mater. Inter. 2015; 7: 9625
- 8 Sun JW, Lee JH, Moon CK, Kim KH, Shin H, Kim JJ. Adv. Mater. 2014; 26: 5684
- 9 Wu TL, Huang MJ, Lin CC, Huang PY, Chou TY, Chen-Cheng RW, Lin HW, Liu RS, Cheng CH. Nat. Photonics 2018; 12: 235
- 10 Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat. Rev. Mater. 2018; 3: 18020
- 11 Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C. Angew. Chem. Int. Ed. Engl. 2012; 51: 11311
- 12 Kawasumi K, Wu T, Zhu T, Chae HS, Van Voorhis T, Baldo MA, Swager TM. J. Am. Chem. Soc. 2015; 137: 11908
- 13 Voll C.-CA, Engelhart J, Einzinger M, Baldo MA, Swager TM. Eur. J. Org. Chem. 2017; 4846
- 14 Goushi K, Adachi C. Appl. Phys. Lett. 2012; 101: 023306
- 15 Goushi K, Yoshida K, Sato K, Adachi C. Nat. Photonics 2012; 6: 253
- 16 Chen Z, Liu XK, Zheng CJ, Ye J, Liu CL, Li F, Ou XM, Lee CS, Zhang XH. Chem. Mater. 2015; 27: 5206
- 17 Oh CS, Kang YJ, Jeon SK, Lee JY. J. Phys. Chem. C. 2015; 119: 22618
- 18 Zhang L, Cai C, Li KF, Tam HL, Chan KL, Cheah KW. ACS Appl. Mater. Inter. 2015; 7: 24983
- 19 Zhao B, Zhang T, Chu B, Li W, Su Z, Luo Y, Li R, Yan X, Jin F, Gao Y, Wu H. Org. Electron. 2015; 17: 15
- 20 Zhang T, Zhao B, Chu B, Li W, Su Z, Wang L, Wang J, Jin F, Yan X, Gao Y, Wu H, Liu C, Lin T, Hou F. Org. Electron. 2015; 24: 1
- 21 Zhang T, Zhao B, Chu B, Li W, Su Z, Yan X, Liu C, Wu H, Jin F, Gao Y. Org. Electron. 2015; 25: 6
- 22 Chen D, Wang Z, Wang D, Wu YC, Lo CC, Lien A, Cao Y, Su SJ. Org. Electron. 2015; 25: 79
- 23 Chen D, Xie G, Cai X, Liu M, Cao Y, Su SJ. Adv. Mater. 2016; 28: 239
- 24 Liu W, Chen J.-X, Zheng C.-J, Wang K, Chen D.-Y, Li F, Dong Y.-P, Lee C.-S, Ou X.-M, Zhang X.-H. Adv. Funct. Mater. 2016; 26: 2002
- 25 Kim KH, Yoo SJ, Kim JJ. Chem. Mater. 2016; 28: 1936
- 26 Li J, Nomura H, Miyazaki H, Adachi C. Chem. Commun. (Camb.) 2014; 50: 6174
- 27 Hung WY, Chiang PY, Lin SW, Tang WC, Chen YT, Liu SH, Chou PT, Hung YT, Wong KT. ACS Appl. Mater. Inter. 2016; 8: 4811
- 28 Jeon SK, Yook KS, Lee JY. Nanotechnology 2016; 27: 224001
- 29 Jankus V, Chiang CJ, Dias F, Monkman AP. Adv. Mater. 2013; 25: 1455
- 30 Data P, Kurowska A, Pluczyk S, Zassowski P, Pander P, Jedrysiak R, Czwartosz M, Otulakowski L, Suwinski J, Lapkowski M, Monkman AP. J. Phys. Chem. C. 2016; 120: 2070
- 31 Park YS, Kim KH, Kim JJ. Appl. Phys. Lett. 2013; 102: 153306
- 32 Hung WY, Fang GC, Chang YC, Kuo T, Chou P, Lin S, Wong K. ACS Appl. Mater. Inter. 2013; 5: 6826
- 33 Huang Q, Zhao S, Xu Z, Fan X, Shen C, Yang Q. Appl. Phys. Lett. 2014; 104: 161112
- 34 Hung WY, Fang GC, Lin SW, Cheng SH, Wong KT, Kuo TY, Chou PT. Sci. Rep. 2014; 4: 5161
- 35 Zhang T, Chu B, Li W, Su Z, Peng QM, Zhao B, Luo Y, Jin F, Yan X, Gao Y, Wu H, Zhang F, Fan D, Wang J. ACS Appl. Mater. Inter. 2014; 6: 11907
- 36 Liu XK, Chen Z, Zheng CJ, Liu CL, Lee CS, Li F, Ou XM, Zhang XH. Adv. Mater. 2015; 27: 2378
- 37 Liu XK, Chen Z, Qing J, Zhang WJ, Wu B, Tam HL, Zhu F, Zhang XH, Lee CS. Adv. Mater. 2015; 27: 7079
- 38 Sarma M, Wong KT. ACS Appl. Mater. Inter. 2018; 10: 19279
- 39 Chapran M, Pander P, Vasylieva M, Wiosna-Sałyga G, Ulanski J, Dias FB, Data P. ACS Appl. Mater. Inter. 2019; 11: 13460
- 40 Hung YT, Chen ZY, Hung WY, Chen DG, Wong KT. ACS Appl. Mater. Inter. 2018; 10: 34435
- 41 Lai SL, Chan MY, Tong QX, Fung MK, Wang PF, Lee CS, Lee ST. Appl. Phys. Lett. 2008; 93: 143301
- 42 Fischer E. Ber. Dtsch. Chem. Ges. 1894; 27: 2985
- 43 Behr JP. , ed. The Lock-and-Key Principle. The State of the Art – 100 Years on. John Wiley & Sons Ltd; Chichester: 1994
- 44 Chiba T, Pu YJ, Miyazaki R, Nakayama KI, Sasabe H, Kido J. Org. Electron. 2011; 12: 710
- 45 Cho SH, Pyo SW, Suh MC. Synth. Met. 2012; 162: 402
- 46 Kim YK, Won Kim J, Park Y. Appl. Phys. Lett. 2009; 94: 63305
- 47 Lee S, Lee JH, Lee JH, Kim JJ. Adv. Funct. Mater. 2012; 22: 855
- 48 Liao LS, Klubek KP. Appl. Phys. Lett. 2008; 92: 223311
- 49 Liao LS, Slusarek WK, Hatwar TK, Ricks ML, Comfort DL. Adv. Mater. 2008; 20: 324
- 50 Lin HW, Lin WC, Chang JH, Wu CI. Org. Electron. 2013; 14: 1204
- 51 Park SM, Kim YH, Yi Y, Oh HY, Won Kim J. Appl. Phys. Lett. 2010; 97: 063308
- 52 Small CE, Tsang SW, Kido J, So SK, So F. Adv. Funct. Mater. 2012; 22: 3261
- 53 Yook KS, Jeon SO, Lee JY. Thin Solid Films 2009; 517: 6109
- 54 Swager TM. Acc. Chem. Res. 2008; 41: 1181
- 55 Mahmood J, Kim D, Jeon IY, Lah MS, Baek JB. Synlett. 2013; 24: 246
- 56 Wright MW, Welker ME. J. Org. Chem. 1996; 61: 133
- 57 Tan-Sien-Hee L, Mesmaeker AK.-D. J. Chem. Soc. Dalt. Trans. 1994; 3651
- 58 Juárez R, Moreno Oliva M, Ramos M, Segura JL, Alemán C, Rodríguez-Ropero F, Curcó D, Montilla F, Coropceanu V, Brédas JL, Qi Y, Kahn A, Ruiz Delgado MC, Casado J, López Navarrete JT. Chem. Eur. J. 2011; 17: 10312
- 59 Harada N, Uda H, Nakasuji K, Murata I. J. Chem. Soc., Perkin Trans. 2 1989; 1449
- 60 Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv. Mater. 2011; 23: 2367
- 61 Kuwabara Y, Ogawa H, Inada H, Noma N, Shirota Y. Adv. Mater. 1994; 6: 677
- 62 Surry DS, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 10354
- 63 Parac M, Etinski M, Peric M, Grimme S. J. Chem. Theory Comput. 2005; 1: 1110
- 64 Kashiki T, Shinamura S, Kohara M, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H. Org. Lett. 2009; 11: 2473
- 65 Beens H, Weller A. Excited Molecular π-Complexes in Solution. In: Organic Molecular Photophysics, Vol 2. Birks JB. , ed.; John Wiley & Sons; London, New York: 1973: 159
- 66 Förster T. Excimers and Exciplexes. In: The Exciplex. Ware WR, Gordon M. , eds.; Academic Press; New York: 1974: 1-22
- 67 A plot of the exciplex emission energy against the calculated EA-IP difference is included in the Supporting Information
- 68 As a computationally convenient alternative we show in the Supporting Information that the HOMO and LUMO energies from DFT calculations can also be used for a sufficiently good approximation. In fact, the R 2 = 0.85 is even better, which might be a result of fortuitous error cancellation
- 69 Méhes G, Goushi K, Potscavage WJ, Adachi C. Org. Electron. 2014; 15: 2027
- 70 Madigan CF, Bulović V. Phys. Rev. Lett. 2003; 91: 247403
- 71 Baldo MA, Soos ZG, Forrest SR. Chem. Phys. Lett. 2001; 347: 297
- 72 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
- 73 Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT.B, Slipchenko LV, Levchenko SV, O'Neill DP, DiStasio Ra, Lochan RC, Wang T, Beran GJ.O, Besley Na, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov Va, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EF. C, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C.-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek Pa, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PM. W, Head-Gordon M. Phys. Chem. Chem. Phys. 2006; 8: 3172
- 74 Becke AD. J. Chem. Phys. 1993; 98: 1372
- 75 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
- 76 Lebedev VI. Sib. Math. J. 1977; 18: 132
- 77 Krishnan R, Binkley JS, Seeger R, Pople J. A, Krishnan R, Binkley J. S, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650